Advertisement

Inventory Routing Problem with Stochastic Demand and Lead Time: State of the Art

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 299)

Abstract

The integration of the different processes that conform the supply chain (SC) is fundamental to obtain a better coordination level. The inventory control and its distribution, are the processes that researches have found as the key in the loss of efficiency and effectiveness in the field of logistics, affecting so the synchronization in the SC management. In order to analyze the recent developments in the integration of these processes, this paper analyzes the state of the art of the progress in information management in the SC, the relationship of inventory policies and the demand information, modeling demand and use of optimization methods in the search for the appropriate solutions.

Keywords

Stochastic Demand Inventory Routing Problem Stochastic Lead Time Inventory Policy Queuing theory Poisson distribution Metaheuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moin, N., Salhi, S.: Inventory routing problems: A logistical overview. Journal of the Operational Research Society 58(9), 1185–1194 (2007)CrossRefMATHGoogle Scholar
  2. 2.
    Guasch, J., Kogan, J.: Inventories and logistic costs in developing countries: Levels and determinants – a red flag for competitiveness and growth. Revista de la Competencia y de la Propiedad Intelectual (2006)Google Scholar
  3. 3.
    Guasch, J.: Logistic costs in latin america and caribbean (2008)Google Scholar
  4. 4.
    Timme, S.G., Williams-Timme, C.: The real cost of holding inventory. Supply Chain Management Review 7, 30–37 (2003)Google Scholar
  5. 5.
    Gavirneni, S., Kapuscinski, R., Tayur, S.: Value of information in capacitated supply chains. Management Science 45(1), 16–24 (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Psaraftis, H.: Dynamic vehicle routing: Status and prospects. Annals of Operations Research 61(1), 143–164 (1995)CrossRefMATHGoogle Scholar
  7. 7.
    Giard, V., Sali, M.: The bullwhip effect in supply chains: A study of contingent and incomplete literature. International Journal of Production Research 51(13), 3880–3893 (2013)CrossRefGoogle Scholar
  8. 8.
    Chopra, S., Meindl, P.: Supply Chain Management: Strategy, Planning, and Operation. Pearson international edition. Pearson Education, Limited (2012)Google Scholar
  9. 9.
    Wagner, M.: Inventory Routing: A Strategic Management Accounting Perspective. Hanken School of Economics (2011)Google Scholar
  10. 10.
    Wensing, T.: Periodic review inventory systems. Lecture Notes in Economics and Mathematical Systems, vol. 651 (2011)Google Scholar
  11. 11.
    Axsäter, S.: Evaluation of installation stock based (r, q)-policies for two-level inventory systems with poisson demand. Operations Research 46(3 suppl. 1), 135–145 (1998)CrossRefGoogle Scholar
  12. 12.
    Axsäter, S.: Exact analysis of continuous review (r,q) policies in two-echelon inventory systems with compound poisson demand. Operations Research 48(5), 686–696 (2000)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Chao, X., Zhou, S.: Joint inventory-and-pricing strategy for a stochastic continuous-review system. IIE Transactions (Institute of Industrial Engineers) 38(5), 401–408 (2006)Google Scholar
  14. 14.
    Berling, P., Marklund, J.: Multi-echelon inventory control: an adjusted normal demand model for implementation in practice. International Journal of Production Research, 1–17 (article in press)Google Scholar
  15. 15.
    Saffari, M., Asmussen, S., Haji, R.: The m/m/1 queue with inventory, lost sale, and general lead times. Queueing Systems 75(1), 65–77 (2013)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Schwarz, M., Sauer, C., Daduna, H., Kulik, R., Szekli, R.: M/m/1 queueing systems with inventory. Queueing Systems 54(1), 55–78 (2006)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Saffari, M., Haji, R.: Queueing system with inventory for two-echelon supply chain. In: International Conference on Computers and Industrial Engineering, pp. 835–838 (2009)Google Scholar
  18. 18.
    Song, J.S., Zipkin, P.: Inventories with multiple supply sources and networks of queues with overflow bypasses. Management Science 55(3), 362–372 (2009)CrossRefMATHGoogle Scholar
  19. 19.
    Song, J.S.: Effect of leadtime uncertainty in a simple stochastic inventory model. Management Science 40(5), 603–613 (1994)CrossRefMATHGoogle Scholar
  20. 20.
    Labadie, N., Prins, C.: Vehicle routing nowadays: Compact review and emerging problems. In: Production Systems and Supply Chain Management in Emerging Countries: Best Practices, pp. 141–166. Springer (2012)Google Scholar
  21. 21.
    Reiman, M.I., Rubio, R., Wein, L.M.: Heavy traffic analysis of the dynamic stochastic inventory-routing problem. Transportation Science 4(33), 361–380 (1999)CrossRefGoogle Scholar
  22. 22.
    Kleywegt, A., Nori, V., Savelsbergh, M.: The stochastic inventory routing problem with direct deliveries. Transportation Science 36(1), 94–118 (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Bertazzi, L., Savelsbergh, M., Speranza, M.: Inventory routing. Operations Research/ Computer Science Interfaces Series 43, 49–72 (2008)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Rajesh Matai, S.S., Mittal, M.L.: Traveling Salesman Problem: an Overview of Applications, Formulations, and Solution Approaches. In: Traveling Salesman Problem, Theory and Applications. Intech (2010)Google Scholar
  25. 25.
    Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2001)Google Scholar
  26. 26.
    Simić, D., Simić, S.: Evolutionary approach in inventory routing problem. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013, Part II. LNCS, vol. 7903, pp. 395–403. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Jaipuria, S., Mahapatra, S.: An improved demand forecasting method to reduce bullwhip effect in supply chains. Expert Systems with Applications 41(5), 2395–2408 (2014)CrossRefGoogle Scholar
  28. 28.
    Partovi, F., Anandarajan, M.: Classifying inventory using an artificial neural network approach. Computers and Industrial Engineering 41(4), 389–404 (2001)CrossRefGoogle Scholar
  29. 29.
    Christiansen, M., Fagerholt, K., Flatberg, T., Haugen, O., Kloster, O., Lund, E.H.: Maritime inventory routing with multiple products: A case study from the cement industry. European Journal of Operational Research 208(1), 86–94 (2011)CrossRefGoogle Scholar
  30. 30.
    Cheng, C.B., Wang, K.P.: Solving a vehicle routing problem with time windows by a decomposition technique and a genetic algorithm. Expert Systems with Applications 36(4), 7758–7763 (2009)CrossRefGoogle Scholar
  31. 31.
    Liu, S.C., Lee, W.T.: A heuristic method for the inventory routing problem with time windows. Expert Systems with Applications 38(10), 13223–13231 (2011)CrossRefGoogle Scholar
  32. 32.
    Qin, L., Miao, L., Ruan, Q., Zhang, Y.: A local search method for periodic inventory routing problem. Expert Systems with Applications 41(2), 765–778 (2014)CrossRefGoogle Scholar
  33. 33.
    Javid, A.A., Azad, N.: Incorporating location, routing and inventory decisions in supply chain network design. Transportation Research Part E: Logistics and Transportation Review 46(5), 582–597 (2010)CrossRefGoogle Scholar
  34. 34.
    Li, K., Chen, B., Sivakumar, A., Wu, Y.: An inventory-routing problem with the objective of travel time minimization. European Journal of Operational Research (2013)Google Scholar
  35. 35.
    Liu, S., Lin, C.: A heuristic method for the combined location routing and inventory problem. International Journal of Advanced Manufacturing Technology 26(4), 372–381 (2005)CrossRefGoogle Scholar
  36. 36.
    Sajjadi, S., Cheraghi, S.: Multi-products location-routing problem integrated with inventory under stochastic demand. International Journal of Industrial and Systems Engineering 7(4), 454–476 (2011)Google Scholar
  37. 37.
    Archetti, C., Doerner, K., Tricoire, F.: A heuristic algorithm for the free newspaper delivery problem. European Journal of Operational Research 230(2), 245–257 (2013)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Agra, A., Christiansen, M., Delgado, A., Simonetti, L.: Hybrid heuristics for a short sea inventory routing problem. European Journal of Operational Research (2013) (article in press)Google Scholar
  39. 39.
    Bertazzi, L., Bosco, A., Guerriero, F., Laganá, D.: A stochastic inventory routing problem with stock-out. Transportation Research Part C: Emerging Technologies 27, 89–107 (2013)CrossRefGoogle Scholar
  40. 40.
    Papageorgiou, D., Nemhauser, G., Sokol, J., Cheon, M.S., Keha, A.: Mirplib - a library of maritime inventory routing problem instances: Survey, core model, and benchmark results. European Journal of Operational Research 235(2), 350–366 (2013)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Corchado, E., Wozniak, M., Abraham, A., de Carvalho, A.C., Snásel, V.: Recent trends in intelligent data analysis. Neurocomputing 126, 1–2 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Raúl Roldán
    • 1
    • 2
  • Rosa Basagoiti
    • 1
  • Enrique Onieva
    • 3
  1. 1.Electronics and Computing DepartamentMondragon UniversityArrasateSpain
  2. 2.Compensar Unipanamericana Fundacin Universitaria Avenida (Calle)BogotColombia
  3. 3.University of Deusto, Deusto Institute of Technology (DeustoTech)BilbaoSpain

Personalised recommendations