Evolutionary Simulation of Complex Networks’ Structures with Specific Functional Properties

  • Victor V. Kashirin
  • Sergey V. Kovalchuk
  • Alexander V. Boukhanovsky
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 299)


Thorough studies of technological and biological systems revealed that inherent networking structure of those systems possess similar topological properties, like node degree distribution or small-world effect, regardless the context, which those systems are related to. Based on that knowledge there were numerous attempts to develop models that capture particular topological properties of observed complex networks, although little attention was paid to developing models with certain functional properties. Present paper proposes a method for simulation of networks’ structures with functional characteristics of interest using heuristic evolutionary approach and utilizing a simulated annealing algorithm.


complex network evolutionary computing simulated annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science (80-) 286, 509 (1999)CrossRefGoogle Scholar
  2. 2.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  3. 3.
    Erdos, P., Renyi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetGoogle Scholar
  4. 4.
    Kossinets, G.: Effects of missing data in social networks. Soc. Networks 28, 247–268 (2006)CrossRefGoogle Scholar
  5. 5.
    Wang, D.J., Shi, X., McFarland, D.A., Leskovec, J.: Measurement error in network data: A re-classification. Soc. Networks 34, 396–409 (2012)CrossRefGoogle Scholar
  6. 6.
    Bui, Q.-C., Nualláin, B.O., Boucher, C.A., Sloot, P.M.A.: Extracting causal relations on HIV drug resistance from literature. BMC Bioinformatics 11, 101 (2010)CrossRefGoogle Scholar
  7. 7.
    Calvo-Rolle, J.L., Corchado, E.: A Bio-inspired knowledge system for improving combined cycle plant control tuning. Neurocomputing 126, 95–105 (2014)CrossRefGoogle Scholar
  8. 8.
    Kashirin, V.V., Dijkstra, L.J.: A Heuristic Optimization Method for Mitigating the Impact of a Virus Attack. Procedia Comput. Sci. 18, 2619–2628 (2013)CrossRefGoogle Scholar
  9. 9.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Kokubugata, H., Kawashima, H.: Application of Simulated Annealing to Routing Problems in City Logistics. Simulated Annealing (2008)Google Scholar
  11. 11.
    Dolan, W.B., Cummings, P.T., LeVan, M.D.: Process optimization via simulated annealing: Application to network design. AIChE J. 35, 725–736 (1989)CrossRefGoogle Scholar
  12. 12.
    Sloot, P.M.A., Ivanov, S.V., Boukhanovsky, A.V., Van De Vijver, D.A.M.C., Boucher, C.A.B.: Stochastic simulation of HIV population dynamics through complex network modelling. Int. J. Comput. Math. 85, 1175–1187 (2008)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Daley, D.J., Kendall, D.G.: Epidemics and rumours. Nature 204, 1118 (1964)CrossRefGoogle Scholar
  14. 14.
    Knyazkov, K.V., Kovalchuk, S.V., Tchurov, T.N., Maryin, S.V., Boukhanovsky, A.V.: CLAVIRE: e-Science infrastructure for data-driven computing. J. Comput. Sci. 3, 504–510 (2012)CrossRefGoogle Scholar
  15. 15.
    Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction–diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Victor V. Kashirin
    • 1
  • Sergey V. Kovalchuk
    • 1
  • Alexander V. Boukhanovsky
    • 1
    • 2
  1. 1.ITMO UniversitySaint-PetersburgRussia
  2. 2.Netherlands Institute for Advanced Study in the Humanities and Social SciencesWassenaarThe Netherlands

Personalised recommendations