Skip to main content

Soft Computing Metamodels for the Failure Prediction of T-stub Bolted Connections

  • Conference paper
  • 1421 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 299)

Abstract

In structural and mechanical fields, there is a growing trend to replace expensive numerical simulations with more cost-effective approximations. In this context, the use of metamodels represents an attractive option. Without significant loss of accuracy, metamodelling techniques can drastically reduce the computational burden required by simulations. This paper proposes a method for developing soft computing metamodels to predict the failure of steel bolted connections. The setting parameters of the metamodels are tuned by an optimisation based on genetic algorithms during the training process. The method also includes the selection of the most relevant input features to reduce the models’ complexity. In total, two well-known metamodelling techniques are evaluated to compare their performances on accuracy and parsimony. This case studies the T-stub bolted connection, which allows us to validate the proposed models. The results show soft computing’s metamodelling capacity to accurately predict the T-stub response, while reducing the number of variables and with negligible computation cost.

Keywords

  • Metamodelling
  • Multilayer Perceptron
  • Support Vector Regression
  • Genetic Algorithms
  • Finite Element Method
  • T-stub connection

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07995-0_5
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07995-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABAQUS v.6.11. Analysis User’s Manual

    Google Scholar 

  2. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  3. Bonora, N.: On the effect of triaxial state of stress on ductility using nonlinear cdm model. International Journal of Fracture 88(4), 359–371 (1997)

    CrossRef  Google Scholar 

  4. Calvo-Rolle, J.L., Corchado, E.: A bio-inspired knowledge system for improving combined cycle plant control tuning. Neurocomputing 126, 95–105 (2014)

    CrossRef  Google Scholar 

  5. Corchado, E., Wozniak, M., Abraham, A., de Carvalho, A.C., Snasel, V.: Recent trends in intelligent data analysis. Neurocomputing 126, 1–2 (2014)

    CrossRef  Google Scholar 

  6. European Committee for Standardization: EN 1993-1-8 Eurocode 3. Design of steel structures part 1-8. Design of joints

    Google Scholar 

  7. Faella, C., Piluso, V., Rizzano, G.: Structural Steel Semirigid Connections: Theory, Design, and Software. New Directions in Civil Engineering. Taylor & Francis (1999)

    Google Scholar 

  8. Hornik, K., Stinchcombe, M.B., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)

    CrossRef  Google Scholar 

  9. Mckay, M., Beckman, R., Conover, W.: A comparison of three method for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MATH  MathSciNet  Google Scholar 

  10. Meckesheimer, M., Booker, A.J., Barton, R.R., Simpson, T.W.: Computationally inexpensive metamodel assessment strategies. AIAA Journal 40, 2053–2060 (2002)

    CrossRef  Google Scholar 

  11. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013)

    Google Scholar 

  12. Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis od computer experiments. Statistical Science 4, 409–423 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Sanz-García, A., Fernández-Ceniceros, J., Fernández-Martínez, R., Martínez-de Pisón, F.J.: Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on an annealing furnace. Ironmaking & Steelmaking, 1–12 (November 2012)

    Google Scholar 

  14. Sanz-García, A., Fernández-Ceniceros, J., Antoñanzas-Torres, F., Martínez-de-Pisón-Ascacibar, F.J.: Parsimonious support vector machines modelling for set points in industrial processes based on genetic algorithm optimization. In: Herrero, A., Baruque, B., Klett, F., Abraham, A., Snasel, V., de Carvalho, A.C.P.L.F., Bringas, P.G., Zelinka, I., Quintian, H., Corchado, E. (eds.) International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. AISC, vol. 239, pp. 1–10. Springer, Heidelberg (2014)

    Google Scholar 

  15. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc., New York (1995)

    Google Scholar 

  16. Villa-Vialaneix, N., Follador, M., Ratto, M., Leip, A.: A comparison of eight metamodeling techniques for the simulation of n2o fluxes and n leaching from corn crops. Environmental Modelling & Software 34, 51–66 (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Fernández-Ceniceros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fernández-Ceniceros, J., Antoñanzas Torres, J., Urraca-Valle, R., Sodupe-Ortega, E., Sanz-García, A. (2014). Soft Computing Metamodels for the Failure Prediction of T-stub Bolted Connections. In: , et al. International Joint Conference SOCO’14-CISIS’14-ICEUTE’14. Advances in Intelligent Systems and Computing, vol 299. Springer, Cham. https://doi.org/10.1007/978-3-319-07995-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07995-0_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07994-3

  • Online ISBN: 978-3-319-07995-0

  • eBook Packages: EngineeringEngineering (R0)