Comparison Analysis of Regression Models Based on Experimental and FEM Simulation Datasets Used to Characterize Electrolytic Tinplate Materials

  • Roberto Fernández-Martínez
  • Rubén Lostado-Lorza
  • Marcos Illera-Cueva
  • Rubén Escribano-García
  • Bryan J. Mac Donald
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 299)

Abstract

Currently, processes to characterize materials are mainly based on two methodologies: a good design of experiments and models based on finite element simulations. In this paper, in order to obtain advantages and disadvantages of both techniques, a prediction of mechanical properties of electrolytic tinplate is made from the data obtained in both methodologies. The predictions, and therefore, the comparative analysis are performed using various machine learning techniques: linear regression, artificial neural networks, support vector machines and regression trees. Data from both methodologies are used to develop models that subsequently are tested with their own method data and with data obtained from mechanical tests. The obtained results show that models based on design of experiments are more accurate, but the models based on finite element simulations better define the problem space.

Keywords

Design of Experiments Electrolytic tinplate materials Finite Element Machine learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corchado, E., Herrero, A.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing (2010), doi:10.1016/j.asoc.2010.07.002Google Scholar
  2. 2.
    Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)Google Scholar
  3. 3.
    Siva Prasad, K., Srinivasa Rao, C., Nageswara Rao, D.: Application of design of experiments to plasma Arc Welding Process: a review. J. Braz. Soc. Mech. Sci. & Eng. 34(1) (2012), http://dx.doi.org/10.1590/S1678-58782012000100010
  4. 4.
    ASTM E8/E8M:2011. Standard Test Methods for Tension Testing of Metallic MaterialsGoogle Scholar
  5. 5.
    JIS G 3303:2008 (ISO 11949). Tinplate and blackplateGoogle Scholar
  6. 6.
    Illera, M., Lostado, R., Fernandez Martinez, R., Mac Donald, B.J.: Characterization of electrolytic tinplate materials via combined finite element and regression models. J. Strain Analysis (2014), 10.1177/0309324714524398Google Scholar
  7. 7.
    Chambers, J.M., Freeny, A., Heiberger, R.M.: Analysis of variance; designed experiments. In: Chambers, J.M., Hastie, T.J. (eds.) Statistical Models in S, ch. 5. Wadsworth & Brooks/Cole (1992)Google Scholar
  8. 8.
    Dean, A., Voss, D.: Design and Analysis of Experiments. Springer, New York (1999) ISBN 0-387-98561-1Google Scholar
  9. 9.
    Bishop, C.M.: Chapter 3: Linear Models for Regression. In: Pattern Recognition and Machine Learning. Springer (2006)Google Scholar
  10. 10.
    Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)Google Scholar
  11. 11.
    Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)MATHGoogle Scholar
  12. 12.
    Smola, A.: Regression Estimation with Support Vector Learning Machines. Master’s thesis, TechnischeUniversit at Munchen (1996)Google Scholar
  13. 13.
    Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. Advances in Neural Information Processing Systems 9, 155–161 (1997)Google Scholar
  14. 14.
    Saybani, M.R., Wah, T.Y., Amini, A., Yazdi, S.R.A.S., Lahsasna, A.: Applications of support vector machines in oil refineries: A survey. International Journal of Physical Sciences 6(27), 6295–6302 (2011)Google Scholar
  15. 15.
    Pai, P.F., Lin, C.S.: Using support vector machines to forecast the production values of the machinery industry in Taiwan. International Journal of Advanced Manufacturing Technology 27(1-2), 205–210 (2005)CrossRefGoogle Scholar
  16. 16.
    Campbell, C.: Kernel methods: a survey of current techniques. Neurocomputing 48, 63–84 (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Basak, D., Pal, S., Patranabis, D.C.: Support Vector Regression. Neural Information Processing - Letters and Reviews 11(10), 203–224 (2007)Google Scholar
  18. 18.
    Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Elsevier Inc. (2011)Google Scholar
  19. 19.
    Fernandez Martinez, R., Lostado Lorza, R., Fernandez Ceniceros, J., Martinez-de-PisonAscacibar, F.J.: Comparative analysis of learning and meta-learning algorithms for creating models for predicting the probable alcohol level during the ripening of grape berries. Computers and Electronics in Agriculture 80, 54–62 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roberto Fernández-Martínez
    • 1
  • Rubén Lostado-Lorza
    • 2
  • Marcos Illera-Cueva
    • 2
  • Rubén Escribano-García
    • 2
  • Bryan J. Mac Donald
    • 3
  1. 1.Department of Electrical EngineeringUniversity of Basque Country UPV/EHUBilbaoSpain
  2. 2.Department of Mechanical EngineeringUniversity of La RiojaLogroñoSpain
  3. 3.School of Mechanical and Manufacturing EngineeringDublin City UniversityDublinIreland

Personalised recommendations