Advertisement

Online Identification of Odometer Parameters of a Mobile Robot

  • Can Ulas Dogruer
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 299)

Abstract

In this paper, odometer parameters of a differential drive mobile robot are learned in an online fashion. EKF which is designed using nominal values of odometer, estimates pose of the mobile robot. A second open-loop model that tracks EKF filter is designed. This open-loop tracking system updates its parameter so as to track the states of the system estimated by EKF. As the parameters of the open-loop system is learned, nominal values of parameters of the EKF plant model are updated with these learned values. Hence a cascaded closed-loop system is proposed. In order to verify the results, a simulink model is developed and performance of the proposed adaptive learning system is investigated. It is seen that regular EKF filter diverges even under mild parameter uncertainty whereas the cascaded closed loop system is stable against severe parameter uncertainty.

Keywords

Extended Kalman Filter System Identification Parameter Learning Odometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larsen, T.D., Bak, M., Andersen, N.A., Ravn, O.: Location Estimation for an Autonomously Guided Vehicle Using an Augmented Kalman Filter to Auto Calibrate OdometryGoogle Scholar
  2. 2.
    Martinelli, A., Tomatis, N., Siegwart, R.: Simultaneous Localization and Odometry Self Calibration for Mobile Robot. Auton. Robot. 22, 75–85 (2007)CrossRefGoogle Scholar
  3. 3.
    Roy, N., Thrun, S.: Online Self-Calibration for Mobile RobotsGoogle Scholar
  4. 4.
    Rudolph, A.: Quantification and Estimation of Differential Odometry Errors in Mobile Robotics with Redundant Sensor Information. The International J. of Robotics Res. 22, 117–128 (2003)CrossRefGoogle Scholar
  5. 5.
    von der Hardt, H.-J., Husson, R., Wold, D.: An Automatic Calibration Method for a Multisensor System: Application to a Mobile Robot Localization System. In: Proceedings of the IEEE International Conference on Robotics & Automation, Leuven, Belgium (1998)Google Scholar
  6. 6.
    Borenstein, J., Feng, L.: Measurement and Correction of Systematic Odometry Errors in Mobile Robots. IEEE Trans. on Robotics and Automation 12, 869–880 (1996)CrossRefGoogle Scholar
  7. 7.
    Antonelli, G., Chiaverini, S., Fusco, G.: A Calibration Method for Odometry of Mobile Robots Based on The Least-Squares Technique: Theory and Experimental Validation. IEEE Trans. on Robotics 21, 994–1004 (2005)CrossRefGoogle Scholar
  8. 8.
    Xu, H., Collins, J.J.: Estimating The Odometry Error of a Mobile Robot by Neural Networks. In: 2009 International Conference on Machine Learning and Applications (2009)Google Scholar
  9. 9.
    Yun, Y., Park, B., Chung, W.K.: Odometry Calibration Using Home Positioning Function for Mobile Robot. In: 2008 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23 (2008)Google Scholar
  10. 10.
    Doh, N.L., Choset, H., Chung, W.K.: Relative Localization Using Path Odometry Information. Auton. Robot. 21, 143–154 (2006)CrossRefGoogle Scholar
  11. 11.
    Sharifuddin, M., Yun, Y., Chung, W.K.: Calibration Technique for Odometry of Mobile Robots using Terminal Iterative Learning Control. In: The 5th International Conference on Ubiquitous Robots and Ambient Intelligence (2008)Google Scholar
  12. 12.
    Lee, K., Chung, W.: Calibration of Kinematic Parameters of a Car-Like Mobile Robot to Improve Odometry Accuracy. Mechatronics 20, 582–595 (2010)CrossRefGoogle Scholar
  13. 13.
    Roumeliotis, S.I., Sukhatme, G.S., Bekey, G.A.: Sensor Fault Detection and Identification in a Mobile Robot. In: Proceedings of the IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Victoria, B.C., Canada (1998)Google Scholar
  14. 14.
    Goel, P., Dedeoglu, G., Roumeliotis, S.I., Sukhatme, G.S.: Fault Detection and Identification in a Mobile Robot Using Multiple Model Estimation and Neural Network. In: Proceedings of the IEEE International Conference on Robotics & Automation, San Francisco, CA (2000)Google Scholar
  15. 15.
    Hashimoto, M., Kawashima, H., Nakagami, T., Oba, F.: Sensor Fault detection and Identification in Dead-Reckoning System of Mobile Robot: Interacting Multiple Model Approach. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Msui, Hawaii, USA (2001)Google Scholar
  16. 16.
    Kelly, A.: Linearized Error Propagation in Odometry. The International J. of Robotics Res. 23, 179–218 (2004)CrossRefGoogle Scholar
  17. 17.
    Martinelli, A., Siegwart, R.: Observability Properties and Optimal Trajectories for On-line Odometry Self-Calibration. In: Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA (2006)Google Scholar
  18. 18.
    Chong, K.S., Kleeman, L.: Accurate Odometry and Error Modelling for a Mobile Robot. In: IEEE International Conference on Robotics and Automation, USA (1997)Google Scholar
  19. 19.
    Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation, 1st edn. Wiley-Interscience (2001)Google Scholar
  20. 20.
    Welch, G., Bishop, G.: An Introduction to Kalman Filter, http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringHacettepe UniversityAnkaraTurkey

Personalised recommendations