A New Iterative Approach for Finding Nearest Neighbors Using Space-Filling Curves for Fast Graphs Visualization

  • Tomáš Ježowicz
  • Petr Gajdoš
  • Eliška Ochodková
  • Václav Snášel
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 299)

Abstract

Graphs in the computer science are widely used in social network analysis, computer networks, transportation networks, and many other areas. In general, they can visualize relationships between objects. However, fast drawing of graphs with readable layouts is still a challenge. This paper aims to the speed up the original Fruchterman-Reingold graph layout algorithm by computing repulsive forces only between vertices that are near each other. A new approach based on the selected space-filling curves is described.

Keywords

graph layouts space-filling curves nearest neighbors Fruchterman-Reingold fast graph visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batagelj, V., Mrvar, A.: Pajek-program for large network analysis. Connections 21(2), 47–57 (1998)Google Scholar
  2. 2.
    Breinholt, G., Schierz, C.: Algorithm 781: Generating hilbert’s space-filling curve by recursion. ACM Trans. Math. Softw. 24(2), 184–189 (1998)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Butz, A.R.: Convergence with hilbert’s space filling curve. J. Comput. Syst. Sci. 3(2), 128–146 (1969)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Connor, M., Kumar, P.: Fast construction of k-nearest neighbor graphs for point clouds. IEEE Transactions on Visualization and Computer Graphics 16(4), 599–608 (2010)CrossRefGoogle Scholar
  5. 5.
    Corchado, E., Baruque, B.: Wevos-visom: An ensemble summarization algorithm for enhanced data visualization. Neurocomputing 75(1), 171–184 (2012)CrossRefGoogle Scholar
  6. 6.
    Corchado, E., Wozniak, M., Abraham, A., de Carvalho, A.C.P.L.F., Snásel, V.: Recent trends in intelligent data analysis. Neurocomputing 126, 1–2 (2014)CrossRefGoogle Scholar
  7. 7.
    Frishman, Y., Tal, A.: Multi-level graph layout on the gpu. IEEE Transactions on Visualization and Computer Graphics 13(6), 1310–1319 (2007)CrossRefGoogle Scholar
  8. 8.
    Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Software: Practice and Experience 21(11), 1129–1164 (1991)Google Scholar
  9. 9.
    Godiyal, A., Hoberock, J., Garland, M., Hart, J.C.: Rapid multipole graph drawing on the GPU. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 90–101. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Hartmann, K., Götzelmann, T., Ali, K., Strothotte, T.: Metrics for functional and aesthetic label layouts. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2005. LNCS, vol. 3638, pp. 115–126. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Jezowicz, T., Kudelka, M., Platos, J., Snásel, V.: Visualization of large graphs using gpu computing. In: INCoS, pp. 662–667 (2013)Google Scholar
  12. 12.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31(1), 7–15 (1989)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Kybic, J., Vnucko, I.: Approximate all nearest neighbor search for high dimensional entropy estimation for image registration. Signal Processing 92(5), 1302–1316 (2012)CrossRefGoogle Scholar
  14. 14.
    Lam, W.M., Shapiro, J.M.: A class of fast algorithms for the peano-hilbert space-filling curve. In: ICIP (1), pp. 638–641 (1994)Google Scholar
  15. 15.
    Liao, S., Lopez, M.A., Leutenegger, S.T.: High dimensional similarity search with space filling curves. In: Proceedings of the 17th International Conference on Data Engineering, pp. 615–622. IEEE (2001)Google Scholar
  16. 16.
    Muelder, C., Ma, K.-L.: Rapid graph layout using space filling curves. IEEE Transactions on Visualization and Computer Graphics 14(6), 1301–1308 (2008)CrossRefGoogle Scholar
  17. 17.
    Novosad, T., Snásel, V., Abraham, A., Yang, J.Y.: Prosima: Protein similarity algorithm. In: NaBIC, pp. 84–91 (2009)Google Scholar
  18. 18.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tomáš Ježowicz
    • 1
  • Petr Gajdoš
    • 1
  • Eliška Ochodková
    • 1
  • Václav Snášel
    • 1
  1. 1.Department of Computer Science, FEECSVŠB - Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations