Seeking the Truth: Human-Facilitated ILEs and Hypotheses Development

Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Following the conceptual exploration and the empirical reflections on decision-making and learning with ILEs in the previous chapters, in this chapter, we attempt to develop a theoretical framework for the alternative designs of ILE(s). Any model or theory albeit to guide decision-making in dynamic tasks , should have viable and testable preposition(s).

Keywords

Alternative designs of ILEs Cognitive mechanism Decisional aids Learner–learner interactions Learner–facilitator interactions Complex problem solving Dynamic tasks Hypothesized process model Hypotheses development Human-facilitated ILE Co-operative learning Experimental design Structured controversy method Pre-test Prior knowledge Cognitive processes Transfer learning Structural knowledge Heuristics knowledge Task performance Decision strategy Learning mode, and prior knowledge Laboratory experiments Human facilitation Facilitator support Pre-task In-task Post-task Decision heuristics Solution strategies Target goals Cues Debriefing Guidance Learners Mental models Structured group learning Expert solution Consistency Fluctuations Cognitive effort Questionnaires ANOVA Simulated task 

References

  1. 1.
    Bakken, B.E.: Learning and Transfer of Understanding in Dynamic Decision Environments. Ph.D. Dissertation, MIT: Boston (1993)Google Scholar
  2. 2.
    Berry, D.C., Broadbent, D.E.: On the relationship between task performance and associated verbalized knowledge. Q. J. Exp. Psychol. 36A, 209–231 (1984)CrossRefGoogle Scholar
  3. 3.
    Blazer, W.K., Doherty, M.E., O’Connor, R.: Effects of cognitive feedback on performance. Psychol. Bull. 106(3), 410–433 (1989)CrossRefGoogle Scholar
  4. 4.
    Breuer, K.: Computer simulations and cognitive development. In: Duncan, K.A., Harris, D. (Eds.) The Proceedings of the World Conference on Computers in Education 1985 WCC/85: 239–244. Amsterdam: North Holland (1985)Google Scholar
  5. 5.
    Briggs, P.: Do they know what they are doing? An evaluation of word-processor user’s implicit and explicit task-relevant knowledge, and its role in self-directed learning. Int. J. Man Mach. Stud. 32, 298–385 (1990)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Broadbent, B., Aston, B.: Human control of a simulated economic system. Ergonomics 21, 1035–1043 (1978)CrossRefGoogle Scholar
  7. 7.
    Conant, R., Ashby, W.: Every good regulator of a system must be a model of the system. Int. J. Sys. Sci 1, 89–97 (1970)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Dhawan, R., O’ Conner, M., Borman, M.: The effect of qualitative and quantitative system dynamics training: an experimental investigation. Sys. Dyn. Rev. 27(2), 313–327 (2011)CrossRefGoogle Scholar
  9. 9.
    Ford, D.N., Mccormack, D.E.M.: Effects of time scale focus on system understanding in decision support systems. Simul. Gaming 31(3), 309–330 (2000)CrossRefGoogle Scholar
  10. 10.
    Forrester, J.W.: Industrial Dynamics. Productivity Press, Cambridge (1961)Google Scholar
  11. 11.
    Gonzalez, M., Machuca, J., Castillo, J.: A transparent-box multifunctional simulator of competing companies. Simul. Gaming 31(2), 240–256 (2000)CrossRefGoogle Scholar
  12. 12.
    Gröbler, A., Maier, F.H., Milling, P.M.: Enhancing learning capabilities by providing transparency in transparency. Simul. Gaming 31(2), 257–278 (2000)CrossRefGoogle Scholar
  13. 13.
    Huber, O.: Complex problem solving as multistage decision making. In: Frensch, P., Funke, J. (eds.) Complex Problem Solving: the European Perspective, pp. 151–173. Lawrence Erlbaum Associates Publishers, NJ (1995)Google Scholar
  14. 14.
    Jansson, A.: Strategies in dynamic decision making: does teaching heuristic strategies by instructors affect performance? In: Caverni, J., Bar-Hillel, M., Barron, F., Jungermann, H. (eds.) Contributions to Decision Making-I, pp. 213–253. Elsevier, Amsterdam (1995)Google Scholar
  15. 15.
    Kottermann, E., Davis, D., Remus, E.: Computer-assisted decision making: performance, beliefs, and illusion of control. Organ. Behav. Hum. Decis. Process. 57, 26–37 (1995)CrossRefGoogle Scholar
  16. 16.
    Lane, M., Tang, Z.: Effectiveness of simulation training on transfer of statistical concepts. J. Educ. Comput. Res. 22(4), 383–396 (2000)CrossRefGoogle Scholar
  17. 17.
    Langan-Fox, J., Wirth, A., Code, S., Langfield-Smith, K., Wirth, A.: Analyzing shared and team mental models. Int. J. Ind. Ergon. 28, 99–112 (2001)CrossRefGoogle Scholar
  18. 18.
    Leemkui, H., De Jong, T.: Adaptive advice in learning with a computer-based knowledge management simulation game. Acad. Manage. Learn. Educ. 11(4), 653–665 (2012)CrossRefGoogle Scholar
  19. 19.
    Mayer, W., Dale, K., Fraccastoro, K., Moss, G.: Improving transfer of learning: relationship to methods of using business simulation. Simul. Gaming 42(1), 64–84 (2011)CrossRefGoogle Scholar
  20. 20.
    Moxnes, E.: Misperceptions of basic dynamics: the case of renewable resource management. Sys. Dyn. Rev. 20, 139–162 (2004)CrossRefGoogle Scholar
  21. 21.
    Plate, R.: Assessing individuals’ understanding of nonlinear casual structures in complex systems. Sys. Dyn. Rev. 28(1), 19–33 (2010)CrossRefGoogle Scholar
  22. 22.
    Qudrat-Ullah, H.: Debriefing can reduce misperceptions of feedback hypothesis: an empirical study. Simul. Gaming 38(3), 382–397 (2007)CrossRefGoogle Scholar
  23. 23.
    Qudrat-Ullah, H.: Perceptions of the effectiveness of system dynamics-based interactive learning environments: an empirical study. Comput. Educ. 55, 1277–1286 (2010)CrossRefGoogle Scholar
  24. 24.
    Sanderson, P.M.: Verbalizable knowledge and skilled task performance: association, dissociation, and mental model. J. Exp. Psychol. Learn. Mem. Cogn. 15, 729–739 (1989)CrossRefGoogle Scholar
  25. 25.
    Schaffernicht, M., Groesser, N.: Mental models of dynamic systems: taking stock and looking ahead. Sys. Dyn. Rev. 28(1), 46–68 (2012)CrossRefGoogle Scholar
  26. 26.
    Schön, D.: The Reflective Practitioner. Basic Books, New York (1938)Google Scholar
  27. 27.
    Severin, W.J.: Another look at cue summation. ACM Commun. Rev. 15(4), 233–245 (1967)Google Scholar
  28. 28.
    Spector, J.M.: System dynamics and interactive learning environments: lessons learned and implications for the future. Simul. Gaming 31(4), 528–535 (2000)CrossRefGoogle Scholar
  29. 29.
    Tennyson, R.D., Thurlow, R., Breuer, K.: Problem-oriented simulations to develop and improve higher-order thinking strategies. Comput. Hum. Behav. 3, 151–165 (1987)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Administrative StudiesYork UniversityTorontoCanada

Personalised recommendations