Empirical Evidence on Dynamic Decision-Making and ILEs

  • Hassan Qudrat-Ullah
Part of the Understanding Complex Systems book series (UCS)


Simulation-based decisional aids play a critical role in the education and training of managerial decision-making. In the previous chapter, we have established an empirical research-based assertion that there is an increasing need to design human-facilitated ILEs for improving managerial decision-making in dynamic tasks. This chapter is devoted to the research related to the two core threads of thinking that identify the critical factors for the design of such an interactive learning environment. The core threads are (1) dynamic decision-making (DDM) and (2) simulation-based interactive learning environments.


Dynamic decision-making Design Cognitive feedback Decisional aids Learner Dynamic tasks Human-facilitated ILE Prior knowledge Cognitive style Cognitive apprenticeship Cognitive load Transfer learning Structural knowledge Heuristics knowledge Task performance Decision strategy Cooperative learning mode Laboratory experiments Human facilitation Facilitator support Pre-task In-task Post-task Decision heuristics Goals Debriefing Guidance Mental models Consistency Questionnaires Computer simulation model ILEs Procedural knowledge Declarative knowledge Learner factors Decision task factors DDM environment factors Facilitator support factors Individual differences Structural variables Learner characteristics Experimental studies Task experience Causal understanding Verbal instructions Expertise development Assessment of learning Rich learning experiences Delays Nonlinearity Feedback loops Task complexity Task transparency Diverse learning experiences Task knowledge Misconceptions Task system Adequate model Tutorial support System dynamics Debriefing sessions Self-directed learners Structured feedback Transfer learning skills Task structures Process facilitation Group process Simulator Information feedback Feed forward Outcome feedback Management flight simulator 


  1. 1.
    Badke-Schaub, P.: Groups and complex problems. Strategies of small groups in dealing with a computer simulated AIDS epidemic. Peter Lang, Frankfurt (1993)Google Scholar
  2. 2.
    Bakken, B.E.: Learning and transfer of understanding in dynamic decision environments. Ph.D. Dissertation. MIT, Boston (1993)Google Scholar
  3. 3.
    Bakken, B., Gould, J., Kim, D.: Experimentation in learning organizations: a management flight simulator approach. In: Morecroft, J., Sterman, J. (eds.) Modeling for Learning Organizations, pp. 243–266. Productivity Press, Portland (1994)Google Scholar
  4. 4.
    Barnett, S., Ceci, S.: When and where do we apply what we learn? A taxonomy for far transfer. Psychol. Bull. 128(4), 612–637 (2002)CrossRefGoogle Scholar
  5. 5.
    Beckmann, J.F., Guthke, J.: Complex problem solving, intelligence, and learning ability. In: Frensch, P., Funke, J. (eds.) Complex Problem Solving: the European Perspective, pp. 177–200. Lawrence Erlbaum Associates Publishers, Mahwah (1995)Google Scholar
  6. 6.
    Benbasat, I., Dexter, A.S.: An experimental evaluation of graphical and color-enhanced information presentation. Manage. Sci. 31, 1348–1364 (1985)CrossRefGoogle Scholar
  7. 7.
    Berry, D.C., Broadbent, D.E.: The combination of explicit and implicit learning processes in task control. Psychol. Res. 49, 7–16 (1987)CrossRefGoogle Scholar
  8. 8.
    Berry, D.C.: The role of action in implicit learning. Q. J. Exp. Psychol. 43A, 8–906 (1991)Google Scholar
  9. 9.
    Berry, D.C., Broadbent, D.E.: On the relationship between task performance and associated verbalized knowledge. Q. J. Exp. Psychol. 36A, 209–231 (1984)CrossRefGoogle Scholar
  10. 10.
    Berry, D.C., Broadbent, D.E.: Interactive tasks and the implicit-explicit distinction. Br. J. Psychol. 79, 251–271 (1988)CrossRefGoogle Scholar
  11. 11.
    Birgit Kopainsky, B., Sawicka, A.: Simulator-supported descriptions of complex dynamic problems: experimental results on task performance and system understanding. Syst. Dyn. Rev. 27(2), 142–172 (2011)CrossRefGoogle Scholar
  12. 12.
    Bjorkman, M.: Feedforward and feedback as determinants of knowledge and policy: notes on neglected issue. Scand. J. Psychol. 13, 152–158 (1972)CrossRefGoogle Scholar
  13. 13.
    Blazer, W.K., Doherty, M.E., O’ Connor, J.: Effect of cognitive feedback on performance. Psychol. Bull. 106(3), 410–433 (1989)Google Scholar
  14. 14.
    Blazer, W.K., Sulsky, L.M., Hammer, L.B., Sumner, K.E.: Task information, cognitive information, or functional validity information: which components of cognitive feedback affects performance? Organ. Behav. Human Decis. Process 53, 35–54 (1992)CrossRefGoogle Scholar
  15. 15.
    Borštnar, M., Kljajić, M., Škraba, A., Kofjač, D., Rajkovič, V.: The relevance of facilitation in group decision making supported by a simulation model. Syst. Dyn. Rev. 27(3), 270–293 (2011)CrossRefGoogle Scholar
  16. 16.
    Brehmer, B.: Strategies in real-time dynamic decision making. In: Hogarth, R.M. (ed.) Insights in Decision Making, pp. 262–279. University of Chicago Press, Chicago (1990)Google Scholar
  17. 17.
    Brehmer, B.: Feedback delays in complex dynamic decision tasks. In: Frensch, P., Funke, J. (eds.) Complex Problem Solving: the European Perspective, pp. 103–130. Lawrence Erlbaum Associates Publishers, NJ (1995)Google Scholar
  18. 18.
    Brehmer, B., Allard, R.: Dynamic decision making: The effects of task complexity and feedback delay. In: Rasmussen, J., Brehmer, B., Leplat, J. (eds.) Distributed Decision Making: Cognitive Models for Cooperative Work, pp. 319–334. Wiley, New York (1991)Google Scholar
  19. 19.
    Brehmer, B., Svenmark, P.: Distributed decision making in dynamic environments: time scales and architecture in decision making. In: Caverni, J. (ed.) Contributions to Decision Making, pp. 155–174. Elsevier Science, New York (1995)Google Scholar
  20. 20.
    Breuer, K., Kummer, R.: Cognitive effects from process learning with computer-based simulations. Comput. Human Behav. 6, 69–81 (1990)CrossRefGoogle Scholar
  21. 21.
    Briggs, P.: Do they know what they are doing? An evaluation of word-processor user’s implicit and explicit task-relevant knowledge, and its role in self-directed learning. Int. J. Man Mach. Stud. 32, 385–398 (1990)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Broadbent, B., Aston, B.: Human control of a simulated economic system. Ergonomics 21, 1035–1043 (1978)CrossRefGoogle Scholar
  23. 23.
    Broadbent, D., FitzGerald, P., Broadbent, M.: Implicit and explicit knowledge in the control of complex systems. Br. J. Psychol. 77, 33–50 (1986)CrossRefGoogle Scholar
  24. 24.
    Capelo, C., Dias, F.: A feedback learning and mental models perspective on strategic decision making. Educational Technology Research & Development (2009)Google Scholar
  25. 25.
    Conant, R., Ashby, W.: Every good regulator of a system must be a model of the system. Int. J. Syst. Sci. 1, 89–97 (1970)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Cox, R.J.: Exploratory learning from computer-based systems. In: Dijkstra, S., Krammer, H.P.M., van Merrienboer, J.J.G. (eds.) Instructional Models in Computer-Based Learning Environments, pp. 405–419. Springer, Berlin (1992)CrossRefGoogle Scholar
  27. 27.
    Davidsen, P.I.: Educational features of the system dynamics approach to modelling and simulation. J. Struct. Learn. 12(4), 269–290 (1996)Google Scholar
  28. 28.
    Davidsen, P.I., Spector, J.M.: Cognitive complexity in system dynamics based learning environments. In: Barlas, Y., Diker, V.G., Polat, S. (eds.) Systems Dynamics Proceedings: Systems Approach to Learning and Education in the 21st Century, vol. 2, pp. 757–760. Bogaziçi University, Istanbul (1997)Google Scholar
  29. 29.
    Davis, D.L.: Are some cognitive better decision makers than others? An empirical investigation. Hum. Syst. Manage. 3, 165–172 (1982)Google Scholar
  30. 30.
    Dhawan, R., O’ Conner, M., Borman, M.: The effect of qualitative and quantitative system dynamics training: an experimental investigation. Syst. Dyn. Rev. 27(2), 313–327 (2011)Google Scholar
  31. 31.
    Diehl, E., Sterman, J.D.: Effects of feedback complexity on dynamic decision making. Organ. Behav. Hum. Decis. Process 62(2), 198–215 (1995)CrossRefGoogle Scholar
  32. 32.
    Dörner, D.: On the difficulties people have in dealing with complexity. Simul. Games 11, 8–106 (1980)Google Scholar
  33. 33.
    Dörner, D., Pfeifer, E.: Strategic thinking, strategic errors, stress, and intelligence. Sprache Kognition 11, 75–90 (1992)Google Scholar
  34. 34.
    Dörner, D., Kreuzig, H.W., Reither, F., Staudel, T. (eds.): Lohhausen. on Dealing with Uncertainty and Complexity. Hans Huber, Bern (1983)Google Scholar
  35. 35.
    Edwards, W.: Dynamic decision theory and probabilistic information processing. Hum. Factors 4, 59–73 (1962)Google Scholar
  36. 36.
    Elsom-Cook, M.T.: Environment design and teaching intervention. In: Town, D.M., de Jong, T., Spada, H. (eds.) Simulation-Based Experiential Learning, pp. 165–176. Springer, Berlin (1993)CrossRefGoogle Scholar
  37. 37.
    Forrester, J.W.: Market growth as influenced by capital investment. Ind. Manage. Rev. 9(2), 83–106 (1968)Google Scholar
  38. 38.
    Forrester, J.W.: Industrial Dynamics. Productivity Press, Cambridge (1961)Google Scholar
  39. 39.
    Funke, J.: Experimental research on complex problem solving. In: Frensch, P., Funke, J. (eds.) Complex Problem Solving: the European Perspective, pp. 3–25. Lawrence Erlbaum Associates Publishers, Mahwah (1995)Google Scholar
  40. 40.
    Funke, J., Muller, H.: Active control and prediction as determinants of system identification and system control. Sprache Kognition 11, 27–37 (1988)Google Scholar
  41. 41.
    Gegenfurtner, A., Veermans, K., Vauras, M.: Effects of computer support, collaboration, and time lag on performance self-efficacy and transfer of training: a longitudinal meta-analysis. Educ. Res. Rev. 8, 75–89 (2013)CrossRefGoogle Scholar
  42. 42.
    Goby, V.P., Lewis, J.H.: Using experiential learning theory and the Myers-Briggs type indicator in teaching business communication. Bus. Commun. Q. 63(3), 39–48 (2000)CrossRefGoogle Scholar
  43. 43.
    Gonzalez, C.: Decision support for real-time, dynamic decision-making tasks. Organ. Behav. Hum. Decis. Process 96, 142–154 (2005)CrossRefGoogle Scholar
  44. 44.
    Gonzalez, M.M., Machuca, J.A.D., Castillo, J.C.R.: A transparent-box multifunctional simulator of competing companies. Simul. Gaming 31(2), 240–256 (2000)CrossRefGoogle Scholar
  45. 45.
    Goodyear, P.: The provision of tutorial support for learning with computer-based simulations. In: Corte, E., Lin, M., Mandal, H., Verschaffel, L. (eds.) Computer-Based Learning Environments and Problem Solving, pp. 391–409. Springer, Berlin (1992)Google Scholar
  46. 46.
    Gröbler, A., Maier, F.H., Milling, P.M.: Enhancing learning capabilities by providing transparency in transparency. Simul. Gaming 31(2), 257–278 (2000)CrossRefGoogle Scholar
  47. 47.
    Gröbler, A.: Structural transparency as an element of business simulators. In: Proceedings of 1998 International System Dynamics Conference, Quebec City, Canada (1998)Google Scholar
  48. 48.
    Groesser, N., Schaffernicht, M.: Mental models of dynamic systems: taking stock and looking ahead. Syst. Dyn. Rev. 28(1), 46–68 (2012)CrossRefGoogle Scholar
  49. 49.
    Grubler, H., Renkal, A., Mandal, H., Reiter, W.: Exploration strategies in an economics simulation game. In: Town, D.M., de Jong, T., Spada, H. (eds.) Simulation-Based Experiential Learning, pp. 225–233. Springer, Berlin (1993)CrossRefGoogle Scholar
  50. 50.
    Hayes, N.A., Broadbent, D.E.: Two modes of learning for interactive tasks. Cognition 28, 249–276 (1988)CrossRefGoogle Scholar
  51. 51.
    Hess, F.W.: Effects of semantic context on problem solving. Zeitschrift fur Experimentelle und Angewandte Psychologie 29, 62–91 (1982)Google Scholar
  52. 52.
    Hogarth, R.M.: Beyond discrete biases: functional and dysfunctional aspects of judgmental heuristics. Psychol. Bull. 9(2), 197–217 (1981)CrossRefGoogle Scholar
  53. 53.
    Hogarth, R.M., Marridakis, S.: The value of decision making in complex environment: an experimental approach. Manage. Sci. 27, 93–107 (1987)CrossRefGoogle Scholar
  54. 54.
    Howie, E., Sy, S., Ford, L., Vicente, K.: Human—computer interface design can reduce misperceptions of feedback. Syst. Dyn. Rev. 16(3), 151–171 (2000)CrossRefGoogle Scholar
  55. 55.
    Hsiao, N.: In search of theories of dynamic decision making: a literature review. Paper presented at the International System Dynamics Conference, Wellington, New Zealand (1999)Google Scholar
  56. 56.
    Hsiao, N.: Exploration of outcome feedback for dynamic decision making. Ph. D. Dissertation, State University of New York at Albany, Albany (2000)Google Scholar
  57. 57.
    Huber, O.: Complex problem solving as multistage decision making. In: Frensch, P., Funke, J. (eds.) Complex Problem Solving: the European Perspective, pp. 151–173. Lawrence Erlbaum Associates Publishers, Mahwah (1995)Google Scholar
  58. 58.
    Jansson, A.: Strategies in dynamic decision making: does teaching heuristic strategies by instructors affect performance? In: Caverni, J., Bar-Hillel, M., Barron, F., Jungermann, H. (eds.) Contributions to Decision Making-I. Elsevier, Amsterdam (1995)Google Scholar
  59. 59.
    Khalifa, M., Davison, R., Kwok, W.: The effects of process and content facilitation restrictiveness on GSS-mediated collaborative learning. Group Decis. Negot. 11, 345–361 (2002)CrossRefGoogle Scholar
  60. 60.
    Kleinmuntz, D.: Cognitive heuristics and feedback in a dynamic decision environment. Manage. Sci. 31, 680–701 (1985)CrossRefGoogle Scholar
  61. 61.
    Kljajić Borštnar, M., Kljajić, M., Škraba, A., Kofjač, D., Rajkovič, V.: The relevance of facilitation in group decision making supported by a simulation model. Syst. Dyn. Rev. 27(3), 270–293 (2011)CrossRefGoogle Scholar
  62. 62.
    Kopainsky, B., Sawicka, A.: Simulator-supported descriptions of complex dynamic problems: experimental results on task performance and system understanding. Syst. Dyn. Rev. 27(2), 142–172 (2011)CrossRefGoogle Scholar
  63. 63.
    Kriz, W.C.: Creating effective learning environments and learning organizations through gaming simulation design. Simul. Gaming 34(4), 495–511 (2003)CrossRefGoogle Scholar
  64. 64.
    Lane, D.C.: On a resurgence of management simulations and games. J. Oper. Res. Soc. 46, 604–625 (1995)Google Scholar
  65. 65.
    Langan-Fox, J., Wirth, A., Code, S., Langfield-Smith, K., Wirth, A.: Analyzing shared and team mental models. Int. J. Ind. Ergon. 28, 99–112 (2001)CrossRefGoogle Scholar
  66. 66.
    Langley, P.A., Morecroft, J.D.W.: Performance and learning in a simulation of oil industry dynamics. Eur. J. Oper. Res. 155, 715–732 (2004)CrossRefMATHGoogle Scholar
  67. 67.
    Langley, P.A., Morecroft, J.D.W.: Learning from microworlds environments: a summary of the research issues. In: Richardson, G.P., Sterman, J.D. (eds.) System Dynamics’ 96. System Dynamics Society, Cambridge, MA (1995)Google Scholar
  68. 68.
    Leemkui, H., De Jong, T.: Adaptive advice in learning with a computer-based knowledge management simulation game. Acad. Manage. Learn. Educ. 11(4), 653–665 (2012)CrossRefGoogle Scholar
  69. 69.
    Lurie, N., Swaminathan, J.: Is timely information always better? The effect of feedback frequency on decision making. Organ. Behav. Hum. Decis. Process. 108, 315–329 (2009)CrossRefGoogle Scholar
  70. 70.
    Machuca, J.A.D.: Are we losing one of the best features of system dynamics? Syst. Dyn. Rev. 8(2), 175–178 (1992)CrossRefGoogle Scholar
  71. 71.
    Machuca, J.A.D.: Transparent-box business simulators: an aid to manage the complexity of organizations. Simul. Gaming 31(2), 230–239 (2000)CrossRefGoogle Scholar
  72. 72.
    Machuca, J.A.D., Ruiz, J.C., Domingo, M.A., Gonzalez, M.M.: 10 years of work on transparent-box business simulation. In: Proceedings of 1998 International System Dynamics Conference, Quebec City, Canada (1998)Google Scholar
  73. 73.
    Mackinnon, A.J., Wearing, A.J.: Complexity and decision making. Behav. Sci. 25(4), 285–292 (1980)CrossRefGoogle Scholar
  74. 74.
    Malloy, T.E., Mitchel, C., Gordon, O.E.: Training cognitive strategies underlying intelligent problem solving. Percept. Motor Skills 64, 1039–1046 (1987)Google Scholar
  75. 75.
    Maxwell, T.A.: Decisions: cognitive styles, mental models, and task performance. Ph. D. Dissertation, State University of New York at Albany, Albany (1995)Google Scholar
  76. 76.
    Mayer, W., Dale, K., Fraccastoro, K., Moss, G.: Improving transfer of learning: relationship to methods of using business simulation. Simul. Gaming 42(1), 64–84 (2011)CrossRefGoogle Scholar
  77. 77.
    Mirjana Kljajić Borštnar, K., Kljajić, M., Škraba, A., Kofjača, A., Rajkoviča, V.: The relevance of facilitation in group decision making supported by a simulation model. Syst. Dyn. Rev. 27(3), 270–293 (2011)Google Scholar
  78. 78.
    Moxnes, E.: Not only the tragedy of the commons: misperceptions of bioeconomics. Manage. Sci. 44, 1234–1248 (1998)CrossRefMATHGoogle Scholar
  79. 79.
    Moxnes, E.: Misperceptions of basic dynamics: the case of renewable resource management. Syst. Dyn. Rev. 20, 139–162 (2004)CrossRefGoogle Scholar
  80. 80.
    Njoo, M., de Jong, T.: Supporting exploratory learning by offering structured overviews of hypotheses. In: Town, D.M., de Jong, T., Spada, H. (eds.) Simulation-Based Experiential Learning, pp. 207–223. Springer, Berlin (1992)Google Scholar
  81. 81.
    Paich, M., Sterman, J.D.: Boom, bust, and failures to learn in experimental markets. Manage. Sci. 39(12), 1439–1458 (1993)CrossRefGoogle Scholar
  82. 82.
    Plate, R.: Assessing individuals’ understanding of nonlinear casual structures in complex systems. Syst. Dyn. Rev. 28(1), 19–33 (2010)CrossRefGoogle Scholar
  83. 83.
    Putz-Osterloh, W., Bott, B., Koster, K.: Modes of learning in problem solving – Are they transferable to tutorial systems. Comput. Human Behav. 6, 83–96 (1990)CrossRefGoogle Scholar
  84. 84.
    Qudrat-Ullah, H.: Debriefing can reduce misperceptions of feedback hypothesis: an empirical study. Simul. Gaming 38(3), 382–397 (2007)CrossRefGoogle Scholar
  85. 85.
    Qudrat-Ullah, H.: Perceptions of the effectiveness of system dynamics-based interactive learning environments: an empirical study. Comput. Educ. 55, 1277–1286 (2010)CrossRefGoogle Scholar
  86. 86.
    Qudrat-Ullah, H., Karakul, M.: Decision making in interactive learning environments towards an integrated model. J. Decis. Syst. 16(1), 79–99 (2007)CrossRefGoogle Scholar
  87. 87.
    Riis, J.O., Smeds, R.: The future of simulation games: issues and challenges. In: Smeds, R., Riis, J.O. (eds.) Experimental Learning in Production Management, pp. 157–164. Champion & Hall, London (1998)CrossRefGoogle Scholar
  88. 88.
    Sanderson, P.M.: Verbalizable knowledge and skilled task performance: association, dissociation, and mental model. J. Exp. Psychol. Learn. Mem. Cogn. 15, 729–739 (1989)CrossRefGoogle Scholar
  89. 89.
    Senge, P.: The Fifth Discipline: the Art and Practice of the Learning Organization. Doubleday/Currency, New York (2006). (Rev. Edition)Google Scholar
  90. 90.
    Sengupta, K., Abdel-Hamid.: Alternative concepts of feedback in dynamic decision environments: an experimental investigation. Manage. Sci. 39(4), 411–428 (1993)Google Scholar
  91. 91.
    Shute, V., Glaser, R.: A large-scale evaluation of an intelligent discovery world: SMITHTOWN. Inter. Learn. Environ. 1(1), 51–77 (1990)CrossRefGoogle Scholar
  92. 92.
    Spector, J.M.: System dynamics and interactive learning environments: lessons learned and implications for the future. Simul. Gaming 31(4), 528–535 (2000)CrossRefGoogle Scholar
  93. 93.
    Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, New York (2000)Google Scholar
  94. 94.
    Sterman, J.D.: Modeling managerial behavior: misperceptions of feedback in a dynamic decision making experiment. Manage. Sci. 35, 321–339 (1989)CrossRefGoogle Scholar
  95. 95.
    Sterman, J.D.: Misperceptions of feedback in dynamic decision making. Organ. Behav. Hum. Decis. Process. 43, 301–335 (1989)CrossRefGoogle Scholar
  96. 96.
    Sterman, J.D.: Learning in and abound complex systems. Syst. Dyn. Rev. 10(2–3), 291–323 (1994)CrossRefGoogle Scholar
  97. 97.
    Sternberg, R.J.: Expertise in complex problem solving: a comparison of alternative conceptions. In: Frensch, P., Funke, J. (eds.) Complex Problem Solving: the European Perspective, pp. 3–25. Lawrence Erlbaum Associates Publishers, Mahwah (1995)Google Scholar
  98. 98.
    Tennyson, R.D., Breuer, K.: Complex-dynamic simulations to improve higher-order thinking strategies. J. Struct. Learn. 11, 311–326 (1991)Google Scholar
  99. 99.
    Tennyson, R.D., Thurlow, R., Breuer, K.: Problem-oriented simulations to develop and improve higher-order thinking strategies. Comput. Hum. Behav. 3, 151–165 (1987)CrossRefGoogle Scholar
  100. 100.
    Vavik, L.: Facilitating discovery learning in computer-based simulation environments. In: Tennyson, R.D., Barron, A.E. (eds.) Automating Instructional Design: Computer-Based Development and Delivery Tools, pp. 403–448. Springer, Berlin (1995)Google Scholar
  101. 101.
    Trees, W.S., Doyle, J.K., Radzicki, M.J.: Using cognitive styles typology to explain differences in dynamic decision making in a computer simulation game environment, pp. 557–560. Paper presented at the International System Dynamics Conference (1996)Google Scholar
  102. 102.
    Vollmeyer, R., Holyoak, K.J. : Hypothesis-testing strategies in learning a complex dynamic system. Paper presented at the Fifth Annual Convention of the American Psychological Society, Chicago, IL (1993)Google Scholar
  103. 103.
    Wheat, D.: The feedback method of teaching macroeconomics: is it effective? Syst. Dyn. Rev. 23(4), 391–413 (2007)CrossRefGoogle Scholar
  104. 104.
    Wolf, J.: The evaluation of computer-based business games. In: Gentry, J. (ed.) Guide to Business Gaming and Experiential Learning, pp. 279–300. Nichols, London (1990)Google Scholar
  105. 105.
    Wood, D., Bruner, J.S., Ross, G.: The role of tutoring in problem solving. J. Child Psychol. Psych. 17, 89–100 (1976)CrossRefGoogle Scholar
  106. 106.
    Yang, J.: Give me the right goals, I will be a good dynamic decision maker, pp. 709–712. Paper presented at the International System Dynamics Conference (1997)Google Scholar
  107. 107.
    Young, S.H., Chen, C.P., Wang, S., Chen, C.H.: An experiment to study the relationship between decision scope and uncontrollable positive feedback loops, pp. 15–20. Paper presented at the International System Dynamics Conference (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Administrative StudiesYork UniversityTorontoCanada

Personalised recommendations