The Greater Whole: Human-Facilitated ILEs and Better Decision-Making Critical Lessons Learned

Part of the Understanding Complex Systems book series (UCS)


Most of the successes as well as failures in businesses and organizations are the consequence of human decisions. In today’s globalized, technology intensive, and hugely competitive economic world, the need and the search for effective decisional aids continues. In this quest, at the outset of this book, we set the mission to explore the conceptualization and design of human facilitation with the objective to improve ILEs effectiveness in supporting learner’s decision-making and learning in dynamic tasks .


Structural knowledge Designer’s logic Heuristics knowledge Operator’s logic Dynamic tasks Task performance Transfer learning Empirical evidence Dyadic learning mode Decision-making laboratory Reflective thought Reflective conversation Task system Consensus proposal Process feedback Systematic variations Cognitive effort Learning laboratory Simulation and modeling Policy analysis Nonintrusive facilitator support Mental models Unguided game playing Cognitive activity Reflective exercises ANOVA Robust model Artificial intelligence Neural networks Organizational learning Human-facilitated iles Expert solution 


  1. 1.
    Abdel-Hamid, T., Sengupta, K., Swett, C.: The impact of goals on software project management: an experimental investigation. MIS Q. 23(4), 1–19 (1999)CrossRefGoogle Scholar
  2. 2.
    Alessi, S.: Building versus using simulations. In: Spector, J.M., Anderson, T.M. (eds.) Integrated and Holistic Perspectives on Learning, Instruction and Technology: Understanding Complexity, pp. 175–196. Kluwer, Dordrecht (2000)Google Scholar
  3. 3.
    Andersen, D.F., Rohrbaugh, J.: Some conceptual and technical problems in integrating models of judgment with simulation models. IEEE Trans. Syst, Man Cybern. 22(1), 21–34 (1992)CrossRefGoogle Scholar
  4. 4.
    Andreassen, P.B.: Judgmental exploration and market overreaction: on the use and disuse of news. J. Behav. Decis. Mak. 3, 153–174 (1990)CrossRefGoogle Scholar
  5. 5.
    Bakken, B.E.:Learning and transfer of understanding in dynamic Decision environments. Ph.D.Dissertation, MIT, Boston (1993)Google Scholar
  6. 6.
    Barlas, Y.: Formal aspects of model validity and validation in system dynamics. Syst. Dyn. Rev. 12, 183–210 (1996)CrossRefGoogle Scholar
  7. 7.
    Beach, D., Pedersen, B.: Process-Tracing Methods: Foundations and Guidelines. University of Michigan Press, Michigan (2013)Google Scholar
  8. 8.
    Cox, R.J.: Exploratory learning from computer-based systems. In: Dijkstra, S., Krammer, H.P.M., van Merrienboer, J.J.G. (eds.) Instructional Models in Computer-Based Learning Environments, pp. 405–419. Springer, Berlin (1992)CrossRefGoogle Scholar
  9. 9.
    Dewey, J.:Education and Experience, Keppa Delta Pi (1938)Google Scholar
  10. 10.
    Diehl, E., Sterman, J.D.: Effects of feedback complexity on dynamic decision making. Organ. Behav. Hum. Decis. Process. 62(2), 198–215 (1995)CrossRefGoogle Scholar
  11. 11.
    Funke, J.: Experimental research on complex problem solving. In: Frensch, P., Funke, J. (eds.) Complex Problem Solving: the European Perspective, pp. 3–25. Lawrence Erlbaum Associates Publishers, NJ (1995)Google Scholar
  12. 12.
    Gagné, M.: Learning processes and instruction. Training Res. J. 96(1), 17–28 (1995)Google Scholar
  13. 13.
    Gibson, F.P., Fichman, M., Plaut, D.C.: Learning in dynamic decision tasks: computational model and empirical evidence. Organ. Behav. Hum. Decis. Process. 71, 1–35 (1997)CrossRefGoogle Scholar
  14. 14.
    Gonzalez, C., Dutt, V.: A generic dynamic control task for behavioral research and education. Comp. Hum. Behav. 27(5), 1904–1914 (2011)CrossRefGoogle Scholar
  15. 15.
    Goodyear, P.: The provision of tutorial support for learning with computer-based simulations. In: Corte, E., Lin, M., Mandal, H., Verschaffel, L. (eds.) Computer-Based Learning Environments and Problem Solving, pp. 391–409. Springer, Berlin (1992)CrossRefGoogle Scholar
  16. 16.
    Graham, A.K., Morecroft, J.D.W., Senge, P.M., Sterman, J.D.: Model-supported case studies for management education. In: Morecroft, J., Sterman, J. (eds.) Modeling for Learning Organizations, pp. 219–241. Productivity Press, Portland (1994)Google Scholar
  17. 17.
    Hedberg, B.L.T.:How organizations learn and unlearn. In: Nystrom, P.C., Starbuck, W.H. (eds.) Handbook of Organizational Design. vol. 1, pp. 3–27. Oxford University Press. New York (1981)Google Scholar
  18. 18.
    Issacs, W., Senge, P.: Overcoming limits to learning in computer-based learning environments. In: Morecroft, J., Sterman, J. (eds.) Modeling for Learning Organizations, pp. 267–287. Productivity Press, Portland (1994)Google Scholar
  19. 19.
    Jansson, A.: Strategies in dynamic decision making: does teaching heuristic strategies by instructors affect performance? In: Caverni, J., Bar-Hillel, M., Barron, F., Jungermann, H. (eds.) Contributions to Decision Making-I. Elsevier, Amsterdam (1995)Google Scholar
  20. 20.
    Kim, D.E.:Learning laboratories: designing a reflective learning environment. Working Paper No. D-4026, System Dynamics Group, MIT, Cambridge, MA (1989)Google Scholar
  21. 21.
    Kopainsky, B., Pirnay-Dummer, P., Alessy, M.: Automated assessment of learners’ understanding in complex dynamic systems. Sys. Dyn. Rev. 28(2), 131–156 (2012)CrossRefGoogle Scholar
  22. 22.
    Lane, D.C.: On a resurgence of management simulations and games. J. Oper. Res. Soc. 46, 604–625 (1995)Google Scholar
  23. 23.
    Njoo, M., de Jong, T.: Supporting exploratory learning by offering structured overviews of hypotheses. In: Town, D.M., de Jong, T., Spada, H. (eds.) Simulation-Based Experiential Learning, pp. 207–223. Springer, Berlin (1992)Google Scholar
  24. 24.
    Paich, M., Sterman, J.D.: Boom, bust, and failures to learn in experimental markets. Manage. Sci. 39(12), 1439–1458 (1993)CrossRefGoogle Scholar
  25. 25.
    Pearson, J., Platt, L.: Dynamic decision making in the brain. Nature Neurosci. 15(3), 341–342 (2012)CrossRefGoogle Scholar
  26. 26.
    Qudrat-Ullah, H.: Debriefing can reduce misperceptions of feedback hypothesis: an empirical study. Simul. Gaming 38(3), 382–397 (2007)CrossRefGoogle Scholar
  27. 27.
    Rahmandad, H.: Effect of delays on complexity of organizational learning. Manage. Sci. 54(7), 1297–1312 (2008)CrossRefGoogle Scholar
  28. 28.
    Richardson, J.: The past is prologue: reflections on forty-plus years of system dynamics modeling practice. Syst. Dyn. Rev. 29(3), 172–187 (2013)CrossRefGoogle Scholar
  29. 29.
    Richardson, G.P., Rohrbaugh, J.: Decision making in dynamic environments: exploring judgments in a system dynamics model-based game. In: Borcherding, K., Larichev, O.I.L., Messick, D.M. (eds.) Contemporary Issues in Decision Making, pp. 463–472. North-Holland, Amsterdam (1990)Google Scholar
  30. 30.
    Schön, D.: The Reflective Practitioner. Basic Books, New York (1938)Google Scholar
  31. 31.
    Senge, P.: The Fifth Discipline: the Art and Practice of the Learning Organization. Doubleday/Currency, New York (1990)Google Scholar
  32. 32.
    Sengupta, K., Abdel-Hamid, : Alternative concepts of feedback in dynamic decision environments: an experimental investigation. Manage. Sci. 39(4), 411–428 (1993)CrossRefGoogle Scholar
  33. 33.
    Sevenson, O.: Process descriptions of decision making. Organ. Behav. Hum. Perform. 23, 86–112 (1979)CrossRefGoogle Scholar
  34. 34.
    Simon, H.: Bounded rationality and organizational learning. Organ. Sci. 2, 125–134 (1991)CrossRefGoogle Scholar
  35. 35.
    Sterman, J.D.: Modeling managerial behavior: misperceptions of feedback in a dynamic decision making experiment. Manage. Sci. 35, 321–339 (1989)CrossRefGoogle Scholar
  36. 36.
    Sterman, J.D.: Misperceptions of feedback in dynamic decision making. Organ. Behav. Hum. Decis. Process. 43, 301–335 (1989)CrossRefGoogle Scholar
  37. 37.
    Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, New York (2000)Google Scholar
  38. 38.
    Tennyson, R.D., Thurlow, R., Breuer, K.: Problem-oriented simulations to develop and improve higher-order thinking strategies. Comp. Hum. Behav. 3, 151–165 (1987)CrossRefGoogle Scholar
  39. 39.
    Wolstenholme, F.: Towards the definition and use of a core set of archetypal structures in system dynamics. Syst. Dyn. Rev. 19, 7–26 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Administrative StudiesYork UniversityTorontoCanada

Personalised recommendations