Can Epigenetics Help Forest Plants to Adapt to Climate Change?

  • Jesús Pascual
  • María Jesús Cañal
  • Barbara Correia
  • Mónica Escandon
  • Rodrigo Hasbún
  • Mónica Meijón
  • Gloria Pinto
  • Luis Valledor
Chapter

Abstract

Forest trees, as long-lived sessile organisms, have to rapidly and reversibly adapt to different unfavorable environments (seasons, periods of extreme weather, etc.) in order to maintain their growth and dispersion capacities. In this context, epigenetic regulation and its underlying mechanisms seem to have a crucial role as a linker between the environment and the genome, being involved in the regulation of leaf development, floral transition, dormancy, and the responses to several abiotic stresses. Environmental stresses can also induce epigenetic marks that can be inherited as a pre adaption by subsequent generations as a form of maternal effect also called epigenetic memory. This memory, together with the natural epigenetic variation, is responsible for some phenotype variation and adaptation capacity to new environmental niches that recently became to be explored as a very promising way to obtain progenies pre-adapted to different environmental conditions. In this chapter, we provide an overview of the epigenetic mechanisms related to abiotic stress adaption in forest trees, considering their possible role as a new tool for plant biotechnology and ecosystem conservation.

Keywords

Forest trees Epigenetic memory Environmental stress Abiotic stress response Memory stress Conifers 

References

  1. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111PubMedCentralCrossRefGoogle Scholar
  2. Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change – evidence from tree populations. Glob Chang Biol 19(6):1645–1661PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38(5):911–921Google Scholar
  4. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543PubMedCrossRefGoogle Scholar
  5. Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427(6970):164–167PubMedCrossRefGoogle Scholar
  6. Becker C, Weigel D (2012) Epigenetic variation: origin and transgenerational inheritance. Curr Opin Plant Biol 15(5):562–567PubMedCrossRefGoogle Scholar
  7. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407–412PubMedCrossRefGoogle Scholar
  8. Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11(2):106–115PubMedGoogle Scholar
  9. Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49(1):61–72PubMedCrossRefGoogle Scholar
  10. Bräutigam K, Vining KJ, Lafon-Placette C, Fossdal CG, Mirouze M, Marcos JG, Fluch S, Fraga MF, Guevara MÁ, Abarca D, Johnsen Ø, Maury S, Strauss SH, Campbell MM, Rohde A, Díaz-Sala C, Cervera M-T (2013) Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol 3(2):399–415PubMedCentralPubMedCrossRefGoogle Scholar
  11. Brunner AM, Busov VB, Strauss SH (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci 9(1):49–56PubMedCrossRefGoogle Scholar
  12. Cadman CS, Toorop PE, Hilhorst HW, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46(5):805–822PubMedCrossRefGoogle Scholar
  13. Cervera MT, Ruiz-Garcia L, Martinez-Zapater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268(4):543–552PubMedCrossRefGoogle Scholar
  14. Charron J-BF, He H, Elling AA, Deng XW (2009) Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21(12):3732–3748PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chinnusamy V, Zhu JK (2009) RNA-directed DNA methylation and demethylation in plants. Sci China C Life Sci 52(4):331–343PubMedCrossRefGoogle Scholar
  16. Chuine I, Beaubien EG (2001) Phenology is a major determinant of tree species range. Ecol Lett 4(5):500–510CrossRefGoogle Scholar
  17. Correia B, Valledor L, Meijón M, Rodriguez JL, Dias MC, Santos C, Cañal MJ, Rodriguez R, Pinto G (2013) Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? PLoS One 8(1):e53543PubMedCentralPubMedCrossRefGoogle Scholar
  18. David Law R, Suttle JC (2004) Changes in histone H3 and H4 multi-acetylation during natural and forced dormancy break in potato tubers. Physiol Plant 120(4):642–649PubMedCrossRefGoogle Scholar
  19. Daxinger L, Whitelaw E (2010) Transgenerational epigenetic inheritance: more questions than answers. Genome Res 20(12):1623–1628PubMedCentralPubMedCrossRefGoogle Scholar
  20. De Carvalho DD, You JS, Jones PA (2010) DNA methylation and cellular reprogramming. Trends Cell Biol 20(10):609–617PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dennis ES, Peacock WJ (2007) Epigenetic regulation of flowering. Curr Opin Plant Biol 10(5):520–527PubMedCrossRefGoogle Scholar
  22. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461PubMedCrossRefGoogle Scholar
  23. Druart N, Johansson A, Baba K, Schrader J, Sjodin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50(4):557–573PubMedCrossRefGoogle Scholar
  24. Farrona S, Coupland G, Turck F (2008) The impact of chromatin regulation on the floral transition. Semin Cell Dev Biol 19(6):560–573PubMedCrossRefGoogle Scholar
  25. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330(6004):622–627PubMedCentralPubMedCrossRefGoogle Scholar
  26. Fraga MF, Rodriguez R, Canal MJ (2002) Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata. Tree Physiol 22(11):813–816PubMedCrossRefGoogle Scholar
  27. Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30(8):1383–1391PubMedCrossRefGoogle Scholar
  28. Gourcilleau D, Bogeat-Triboulot M-B, Le Thiec D, Lafon-Placette C, Delaunay A, El-Soud WA, Brignolas F, Maury S (2010) DNA methylation and histone acetylation: genotypic variations in hybrid poplars, impact of water deficit and relationships with productivity. Ann For Sci 67(2):208CrossRefGoogle Scholar
  29. Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Ann Bot 96:1143–1164PubMedCrossRefGoogle Scholar
  30. Grant-Downton RT, Dickinson HG (2006) Epigenetics and its implications for plant biology 2. The “Epigenetic Epiphany”: epigenetics, evolution and beyond. Ann Bot 97:11–27PubMedCentralPubMedCrossRefGoogle Scholar
  31. Grativol C, Hemerly AS, Ferreira PCG (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta Gene Regul Mech 1819(2):176–185CrossRefGoogle Scholar
  32. Grossniklaus U, Kelly WG, Ferguson-Smith AC, Pembrey M, Lindquist S (2013) Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 14(3):228–235PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hamanishi ET, Campbell MM (2011) Genome-wide responses to drought in forest trees. Forestry 84(3):273–283CrossRefGoogle Scholar
  34. Harper LV (2005) Epigenetic inheritance and the intergenerational transfer of experience. Psychol Bull 131(3):340–360PubMedCrossRefGoogle Scholar
  35. Hasbún R, Valledor L, Berdasco M, Santamaría E, Cañal MJ, Rodríguez R (2007) Dynamics of DNA methylation during chestnut trees development. Application to breeding programs. Acta Hort 760:563Google Scholar
  36. Hauser MT, Aufsatz W, Jonak C, Luschnig C (2011) Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta 1809(8):459–468PubMedCrossRefGoogle Scholar
  37. Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol 187(3):867–876PubMedCrossRefGoogle Scholar
  38. Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8(11):534–540PubMedCrossRefGoogle Scholar
  39. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84(2):131–176PubMedCrossRefGoogle Scholar
  40. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5(6):e1000530PubMedCentralPubMedCrossRefGoogle Scholar
  41. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705PubMedCrossRefGoogle Scholar
  42. Kovalchuk O, Burke P, Arkhipov A, Kuchma N, James SJ, Kovalchuk I, Pogribny I (2003) Genome hypermethylation in Pinus silvestris of Chernobyl—a mechanism for radiation adaptation? Mutat Res Fund Mol Mech Mut 529(1):13–20CrossRefGoogle Scholar
  43. Kvaalen H, Johnsen O (2008) Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol 177(1):49–59PubMedGoogle Scholar
  44. Lafon-Placette C, Faivre-Rampant P, Delaunay A, Street N, Brignolas F, Maury S (2013) Methylome of DNase I sensitive chromatin in Populus trichocarpa shoot apical meristematic cells: a simplified approach revealing characteristics of gene-body DNA methylation in open chromatin state. New Phytol 197(2):416–430PubMedCrossRefGoogle Scholar
  45. Lang G, Early J, Martin G, Darnell R (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience (USA) 22:371–377Google Scholar
  46. Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3(3):594–602PubMedCentralPubMedCrossRefGoogle Scholar
  47. Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6(2):108–118PubMedCrossRefGoogle Scholar
  48. Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20(2):259–276PubMedCentralPubMedCrossRefGoogle Scholar
  49. Lim JP, Brunet A (2013) Bridging the transgenerational gap with epigenetic memory. Trends Genet 29(3):176–186PubMedCentralPubMedCrossRefGoogle Scholar
  50. Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5(4):e10326PubMedCentralPubMedCrossRefGoogle Scholar
  51. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55(1):131–151PubMedCrossRefGoogle Scholar
  52. Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94(4):481–495PubMedCrossRefGoogle Scholar
  53. Marfil C, Camadro E, Masuelli R (2009) Phenotypic instability and epigenetic variability in a diploid potato of hybrid origin, Solanum ruiz-lealii. BMC Plant Biol 9(1):21PubMedCentralPubMedCrossRefGoogle Scholar
  54. Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SD, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58(5):1035–1045PubMedCrossRefGoogle Scholar
  55. Meijon M, Feito I, Valledor L, Rodriguez R, Canal MJ (2010) Dynamics of DNA methylation and Histone H 4 acetylation during floral bud differentiation in azalea. BMC Plant Biol 10(1):10–10PubMedCentralPubMedCrossRefGoogle Scholar
  56. Mendez-Vigo B, Pico FX, Ramiro M, Martinez-Zapater JM, Alonso-Blanco C (2011) Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Physiol 157(4):1942–1955PubMedCentralPubMedCrossRefGoogle Scholar
  57. Mirbahai L, Chipman JK (2014) Epigenetic memory of environmental organisms: a reflection of lifetime stressor exposures. Mutat Res Genet Toxicol Environ Mutagen 764–765:10–17PubMedCrossRefGoogle Scholar
  58. Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14(3):267–274PubMedCrossRefGoogle Scholar
  59. Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442(7106):1046–1049PubMedCrossRefGoogle Scholar
  60. Monteuuis O, Baurens F, Goh D, Quimado M, Doulbeau S, Verdeil J (2009) DNA methylation in Acacia mangium in vitro and ex-vitro buds, in relation to their within-shoot position, age and leaf morphology of the shoots. Silvae Genet 58(5–6):287–292Google Scholar
  61. Paun O, Bateman RM, Fay MF, Hedren M, Civeyrel L, Chase MW (2010) Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol 27(11):2465–2473PubMedCentralPubMedCrossRefGoogle Scholar
  62. Paun O, Bateman R, Fay M, Luna J, Moat J, Hedren M, Chase M (2011) Altered gene expression and ecological divergence in sibling allopolyploids of Dactylorhiza (Orchidaceae). BMC Evol Biol 11(1):113PubMedCentralPubMedCrossRefGoogle Scholar
  63. Raj S, Bräutigam K, Hamanishi ET, Wilkins O, Thomas BR, Schroeder W, Mansfield SD, Plant AL, Campbell MM (2011) Clone history shapes Populus drought responses. Proc Natl Acad Sci U S A 108(30):12521–12526PubMedCentralPubMedCrossRefGoogle Scholar
  64. Reyes JC, Hennig L, Gruissem W (2002) Chromatin-remodeling and memory factors. New regulators of plant development. Plant Physiol 130(3):1090–1101PubMedCentralPubMedCrossRefGoogle Scholar
  65. Richards EJ (2011) Natural epigenetic variation in plant species: a view from the field. Curr Opin Plant Biol 14(2):204–209PubMedCrossRefGoogle Scholar
  66. Rico L, Ogaya R, Barbeta A, Penuelas J (2014) Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change. Plant Biol 16(2):419–427PubMedCrossRefGoogle Scholar
  67. Rohde A, Junttila O (2008) Remembrances of an embryo: long-term effects on phenology traits in spruce. New Phytol 177(1):2–5PubMedCrossRefGoogle Scholar
  68. Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8):2370–2390PubMedCentralPubMedCrossRefGoogle Scholar
  69. Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 1–9Google Scholar
  70. Salinas S, Brown Simon C, Mangel M, Munch Stephan B (2013) Non-genetic inheritance and changing environments. Nongenet Inher 38Google Scholar
  71. Santamaria ME, Hasbun R, Valera MJ, Meijon M, Valledor L, Rodriguez JL, Toorop PE, Canal MJ, Rodriguez R (2009) Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. J Plant Physiol 166(13):1360–1369PubMedCrossRefGoogle Scholar
  72. Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108(3):485–498PubMedCentralPubMedCrossRefGoogle Scholar
  73. Saze H (2008) Epigenetic memory transmission through mitosis and meiosis in plants. Semin Cell Dev Biol 19(6):527–536PubMedCrossRefGoogle Scholar
  74. Schmitz RJ, Ecker JR (2012) Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci 17(3):149–154PubMedCentralPubMedCrossRefGoogle Scholar
  75. Skrøppa T, Kohmann K, Johnsen Ø, Steffenrem A, Edvardsen ØM (2007) Field performance and early test results of offspring from two Norway spruce seed orchards containing clones transferred to warmer climates. Can J Forest Res 37(3):515–522CrossRefGoogle Scholar
  76. Tessadori F, van Driel R, Fransz P (2004) Cytogenetics as a tool to study gene regulation. Trends Plant Sci 9(3):147–153PubMedCrossRefGoogle Scholar
  77. Turck F, Coupland G (2014) Natural variation in epigenetic gene regulation and its effects on 740 plant developmental traits. Evolution 68(3):620–631PubMedCrossRefGoogle Scholar
  78. Uthup TK, Ravindran M, Bini K, Thakurdas S (2011) Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Mol Plant 4(6):996–1013PubMedCrossRefGoogle Scholar
  79. Vaillant I, Paszkowski J (2007) Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol 10(5):528–533PubMedCrossRefGoogle Scholar
  80. Valledor L, Hasbún R, Meijón M, Rodríguez JL, Santamaría E, Viejo M, Berdasco M, Feito I, Fraga MF, Canal MJ, Rodríguez R (2007) Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tiss Org 91:75–86CrossRefGoogle Scholar
  81. Valledor L, Jorrín JV, Rodríguez JL, Lenz C, Meijón M, Rodríguez R, Cañal MJ (2010) Combined proteomic and transcriptomic analysis identifies differentially expressed pathways associated to Pinus radiata needle maturation. J Prot Res 9(8):3954–3979CrossRefGoogle Scholar
  82. Vivas M, Zas R, Sampedro L, Solla A (2013) Environmental maternal effects mediate the resistance of maritime pine to biotic stress. PLoS One 8(7):e70148PubMedCentralPubMedCrossRefGoogle Scholar
  83. Walter J, Jentsch A, Beierkuhnlein C, Kreyling J (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot 94:3–8CrossRefGoogle Scholar
  84. Whittle CA, Otto SP, Johnston MO, Krochko JE (2009) Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany 87(6):650–657CrossRefGoogle Scholar
  85. Wu W-Q, Yi M, Wang X-F, Ma L-L, Jiang L, Li X-W, Xiao H-X, Sun M-Z, Li L-F, Liu B (2013) Genetic and epigenetic differentiation between natural Betula ermanii (Betulaceae) populations inhabiting contrasting habitats. Tree Genet Genomics 9(5):1321–1328CrossRefGoogle Scholar
  86. Yakovlev IA, Fossdal CG, Johnsen Ø (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187(4):1154–1169PubMedCrossRefGoogle Scholar
  87. Yakovlev IA, Asante DKA, Fossdal CG, Junttila O, Johnsen Ø (2011) Differential gene expression related to an epigenetic memory affecting climatic adaptation in Norway spruce. Plant Sci 180(1):132–139PubMedCrossRefGoogle Scholar
  88. Yakovlev I, Fossdal CG, Skrøppa T, Olsen JE, Jahren AH, Johnsen Ø (2012) An adaptive epigenetic memory in conifers with important implications for seed production. Seed Sci Res 22(02):63–76CrossRefGoogle Scholar
  89. Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet 9:233–257PubMedCrossRefGoogle Scholar
  90. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker Joseph R (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6):1189–1201PubMedCrossRefGoogle Scholar
  91. Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu J-K (2007) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS One 2(11):e1210PubMedCentralPubMedCrossRefGoogle Scholar
  92. Zhang M, Kimatu JN, Xu K, Liu B (2010) DNA cytosine methylation in plant development. J Genet Genomics 37(1):1–12PubMedCrossRefGoogle Scholar
  93. Zhang Y-Y, Fischer M, Colot V, Bossdorf O (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol 197(1):314–322PubMedCrossRefGoogle Scholar
  94. Zhong S-H, Liu J-Z, Jin H, Lin L, Li Q, Chen Y, Yuan Y-X, Wang Z-Y, Huang H, Qi Y-J, Chen X-Y, Vaucheret H, Chory J, Li J, He Z-H (2013) Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 110(22):9171–9176PubMedCentralPubMedCrossRefGoogle Scholar
  95. Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu J-K, Hasegawa PM, Bohnert HJ, Shi H, Yun D-J, Bressan RA (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci U S A 105(12):4945–4950PubMedCentralPubMedCrossRefGoogle Scholar
  96. Zluvova J, Janousek B, Vyskot B (2001) Immunoshistochemical study of DNA methylation dynamics during plant development. J Exp Bot 52:2265–2273PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jesús Pascual
    • 1
  • María Jesús Cañal
    • 1
  • Barbara Correia
    • 2
  • Mónica Escandon
    • 1
  • Rodrigo Hasbún
    • 3
  • Mónica Meijón
    • 4
  • Gloria Pinto
    • 2
  • Luis Valledor
    • 2
  1. 1.Plant PhysiologyUniversity of OviedoOviedoSpain
  2. 2.Department of Biology and CESAMUniversity of AveiroAveiroPortugal
  3. 3.Faculty of Forest SciencesUniversity of ConcepciónConcepciónChile
  4. 4.Regional Institute for Research and Agro-Food Development (SERIDA), Finca Experimental la Mata-GradoAsturiasSpain

Personalised recommendations