Skip to main content

Tomato Epigenetics: Deciphering the “Beyond” Genetic Information in a Vegetable Fleshy-Fruited Crop

  • Chapter
  • First Online:
Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications
  • 1103 Accesses

Abstract

The first natural plant mutant for which the molecular basis was determined to be an epimutation rather than a change in DNA sequence was a peloric variant of toadflax, Linaria vulgaris. Remarkably, the second example of a natural epimutant came from the vegetable fleshy-fruited crop tomato (Solanum lycopersicum). The discovery of the molecular basis for the Colorless nonripening (Cnr) epimutation was a landmark for plant epigenetics and, importantly, linked epigenetic mechanisms with an important agronomical trait. More recently, several studies on tomato have contributed to our better understanding of epigenetic mechanisms underlying important heritable crop traits, such as ripening and stress response. Epigenetic mechanisms have also been associated with transgressive segregation in hybrids generated from crosses between cultivated tomato and close wild relatives. Therefore, we can only envision that tomato will became a model for studying the epigenetic basis of economically important phenotypes, allowing for their more efficient exploitation in plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiese Cigliano R, Sanseverino W, Cremona G et al (2013) Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles. BMC Genomics 14:57

    Article  PubMed Central  PubMed  Google Scholar 

  • ARKive (2013) Galápagos tomato (Solanum cheesmaniae). http://www.arkive.org/galapagos-tomato/solanum-cheesmaniae. Accessed 5 Feb 2014

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094

    Article  PubMed Central  PubMed  Google Scholar 

  • Bai M, Yang GS, Chen WT et al (2012) Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Gene 501:52–62

    Article  CAS  PubMed  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A et al (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S et al (2010) Heterosis. Plant Cell 22:2105–2112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bomblies K, Weigel D (2007) Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8:382–393

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  • Burge GK, Morgan ER, Seelye JF (2002) Opportunities for synthetic plant chimeral breeding: past and future. Plant Cell Tiss Org Cult 70:13–21

    Article  CAS  Google Scholar 

  • Chen D, Meng Y, Yuan C et al (2011) Plant siRNAs from introns mediate DNA methylation of host genes. RNA 17:1012–1024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chu G, Chang E (1988) Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242:564–567

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1868) The variation of animals and plants under domestication. John Murray, London

    Google Scholar 

  • Ding D, Zhang LF, Wang H et al (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dumbliauskas E, Lechner E, Jaciubek M et al (2011) The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain MEDEA parental imprinting. EMBO J 30:731–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksson EM, Bovy A, Manning K et al (2004) Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184–4197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • FAO (2013) Food and Agriculture Organization of the United Nations. http://www.fao.org. Accessed 5 Feb 2014

  • Ferreira e Silva GF, Silva EM, Azevedo Mda S et al (2014) microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J 78:604–618

    Article  CAS  PubMed  Google Scholar 

  • Gillpasy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  Google Scholar 

  • González RM, Ricardi MM, Iusem ND (2011) Atypical epigenetic mark in an atypical location: cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene. BMC Plant Biol 11:94

    Article  PubMed Central  PubMed  Google Scholar 

  • González RM, Ricardi MM, Iusem ND (2013) Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics 8:864–872

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamzeiy H, Allmer J, Yousef M (2014) Computational methods for microRNA target prediction. In: Yousef M, Allmer J (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 1107. Springer, New York, pp 207–221

    Google Scholar 

  • Haroldsen VM, Szczerba MW, Aktas H et al (2012) Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement. Front Plant Sci 3:39

    Article  PubMed Central  PubMed  Google Scholar 

  • Higa LA, Wu M, Ye T et al (2006) CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 8:1277–1283

    Article  CAS  PubMed  Google Scholar 

  • Jia XY, Wang WX, Ren LG et al (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol 71:51–59

    Article  CAS  PubMed  Google Scholar 

  • Joubès J, Phan TH, Just D et al (1999) Molecular and biochemical characterization of the involvement of cyclin-dependent kinase A during the early development of tomato fruit. Plant Physiol 121:857–869

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalisz S, Purugganan MD (2004) Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 19:309–314

    Article  PubMed  Google Scholar 

  • Kapoor M, Arora R, Lama T et al (2008) Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451

    Article  PubMed Central  PubMed  Google Scholar 

  • Karlova R, van Haarst JC, Maliepaard C et al (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J Exp Bot 64:1863–1878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kuang H, Padmanabhan C, Li F et al (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res 19:42–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP et al (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tang X, Gao L et al (2012) A role of tomato UV-damaged DNA binding protein 1 (DDB1) in organ size control via an epigenetic manner. PLoS One 7:e42621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu C, Chen J, Zhang Y et al (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 29:1005–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manning K, Tör M, Poole M et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Martel C, Vrebalov J, Tafelmeyer P et al (2011) The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol 157:1568–1579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martienssen R, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    Article  CAS  PubMed  Google Scholar 

  • Mohorianu I, Schwach F, Jing R et al (2011) Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J 67:232–246

    Article  CAS  PubMed  Google Scholar 

  • Molnar A, Melnyk CW, Bassett A et al (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875

    Article  CAS  PubMed  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT et al (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    Article  CAS  PubMed  Google Scholar 

  • Moxon S, Jing R, Szittya G et al (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nuez F, Provens J, Blanca JM (2004) Relationships, origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99

    Article  PubMed  Google Scholar 

  • Ori N, Cohen AR, Etzioni A et al (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Morea FA, Vicentini R, Silva GF et al (2013) Global analysis of the sugarcane microtranscriptome reveals a unique composition of small RNAs associated with axillary bud outgrowth. J Exp Bot 64:2307–2320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peralta IE, Spooner DM (2005) Morphological characterization and relationships of wild tomatoes (Solanum L. Section Lycopersicon). In: Keating RC, Hollowell VC, Croat TB (eds) A Festschrift for William G. D'arcy: the legacy of a taxonomist. Missouri Botanical Garden Press, St. Louis, IL, pp 227–257

    Google Scholar 

  • Piriyapongsa J, Mariño-Ramírez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preston JC, Hileman LC (2013) Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci 4:80

    PubMed Central  PubMed  Google Scholar 

  • Qian Y, Cheng Y, Cheng X et al (2011) Identification and characterization of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in maize. Plant Cell Rep 30:1347–1363

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372

    Article  PubMed  Google Scholar 

  • Sadeh R, Allis CD (2011) Genome-wide “re”-modeling of nucleosome positions. Cell 147:263–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salinas M, Xing S, Höhmann S et al (2012) Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta 235:1171–1184

    Article  CAS  PubMed  Google Scholar 

  • Seymour G, Poole M, Manning K et al (2008) Genetics and epigenetics of fruit development and ripening. Curr Opin Plant Biol 11:58–63

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad PV, Dunn RM, Santos BA et al (2012) Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J 31:257–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stadler MB, Murr R, Burger L et al (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495

    CAS  PubMed  Google Scholar 

  • Stegemann S, Keuthe M, Greiner S et al (2012) Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci U S A 109:2434–2438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang X, Liu J, Huang S et al (2012) Roles of UV-damaged DNA binding protein 1 (DDB1) in epigenetically modifying multiple traits of agronomic importance in tomato. Plant Signal Behav 7:1529–1532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teixeira FK, Colot V (2009) Gene body DNA methylation in plants: a means to an end or an end to a means? EMBO J 28:997–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teyssier E, Bernacchia G, Maury S et al (2008) Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta 228:391–399

    Article  CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Thompson AJ, Tor M, Barry CS et al (1999) Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol 120:383–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thyssen G, Svab Z, Maliga P (2012) Cell-to-cell movement of plastids in plants. Proc Natl Acad Sci U S A 109:2439–2443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V et al (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ et al (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu R, Wang X, Lin Y et al (2013) Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants. PLoS One 8:e61995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xian Z, Yang Y, Huang W et al (2013) Molecular cloning and characterisation of SlAGO family in tomato. BMC Plant Biol 13:126

    Article  PubMed Central  PubMed  Google Scholar 

  • Yifhar T, Pekker I, Peled D et al (2012) Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24:3575–3589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zamir D, Tanksley SD (1988) Tomato genome is comprised largely of fast-evolving, low copy-number sequences. Mol Gen Genet 213:254–261

    Article  CAS  Google Scholar 

  • Zanca AS, Vicentini R, Ortiz-Morea FA et al (2010) Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane. BMC Plant Biol 10:260

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zeng R, Chen J et al (2008) Identification of conserved microRNAs and their targets from Solanum lycopersicum Mill. Gene 423:1–7

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zou Z, Zhang J et al (2011) Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett 585:435–439

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Fei Z, Chen YR et al (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31:154–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio T. S. Nogueira .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nogueira, F.T.S. (2014). Tomato Epigenetics: Deciphering the “Beyond” Genetic Information in a Vegetable Fleshy-Fruited Crop. In: Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-07971-4_5

Download citation

Publish with us

Policies and ethics