Skip to main content

Histone H3 Phosphorylation in Plants and Other Organisms

  • Chapter
  • First Online:
Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications

Abstract

Post-translational histone modifications, such as methylation and phosphorylation, play an important role in determining chromatin states associated with gene activation or repression. Histone H3 phosphorylation in particular has been linked to a variety of cellular processes during the cell cycle. H3 phosphorylation is involved in chromosome condensation and segregation during mitosis and meiosis in plants and animals. During interphase, H3 phosphorylation has been implicated in transcriptional regulation, DNA replication and apoptosis. Phosphorylation also occurs in the histone variants, H3.3 and CENH3, during cell division. The diverse and sometimes contrasting processes in which H3 phosphorylation participates have made difficult to completely understand its function. In addition, functional differences on H3 phosphorylation have been observed in diverse organisms despite the conservation of the modified residue. Here we discuss the most recent findings about the roles of histone H3 phosphorylation, the proteins involved in phosphorylating particular residues and the mechanisms by which this modification results in a particular gene expression state. The differences and similarities between plants and other model systems are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera A, García-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124

    CAS  PubMed  Google Scholar 

  • Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200

    CAS  PubMed  Google Scholar 

  • Ali M, Rincón-Arano H, Zhao W et al (2013) Molecular basis for chromatin binding and regulation of MLL5. Proc Natl Acad Sci U S A 110:11296–11301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anest V, Hanson JL, Cogswell PC et al (2003) A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423:659–663

    CAS  PubMed  Google Scholar 

  • Ashtiyani RK, Moghaddam AM, Schubert V et al (2011) AtHaspin phosphorylates histone H3 at threonine 3 during mitosis and contributes to embryonic patterning in Arabidopsis. Plant J 68:443–454

    CAS  PubMed  Google Scholar 

  • Baek SH (2011) When signaling kinases meet histones and histone modifiers in the nucleus. Mol Cell 42:274–284

    CAS  PubMed  Google Scholar 

  • Baker SP, Phillips J, Anderson S et al (2010) Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae. Nat Cell Biol 12:294–298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barratt MJ, Hazzalin CA, Cano E et al (1994) Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc Natl Acad Sci U S A 91:4781–4785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    CAS  PubMed  Google Scholar 

  • Boeckmann L, Takahashi Y, Au WC et al (2013) Phosphorylation of centromeric histone H3 variant regulates chromosome segregation in Saccharomyces cerevisiae. Mol Biol Cell 24:2034–2044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caperta AD, Rosa M, Delgado M et al (2008) Distribution patterns of phosphorylated Thr 3 and Thr 32 of histone H3 in plant mitosis and meiosis. Cytogenet Genome Res 122:73–79

    CAS  PubMed  Google Scholar 

  • Casas-Mollano JA, Jeong BR, Xu J et al (2008) The MUT9p kinase phosphorylates histone H3 threonine 3 and is necessary for heritable epigenetic silencing in Chlamydomonas. Proc Natl Acad Sci U S A 105:6486–6491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castellano-Pozo M, Santos-Pereira JM, Rondón AG et al (2013) R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol Cell 52:583–590

    CAS  PubMed  Google Scholar 

  • Cerutti H, Casas-Mollano JA (2009) Histone H3 phosphorylation: universal code or lineage specific dialects? Epigenetics 4:71–75

    CAS  PubMed  Google Scholar 

  • Cheung P, Tanner KG, Cheung WL et al (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5:905–915

    CAS  PubMed  Google Scholar 

  • Choi HS, Choi BY, Cho YY et al (2005) Phosphorylation of Ser28 in histone H3 mediated by mixed lineage kinase-like mitogen-activated protein triple kinase alpha. J Biol Chem 280:13545–13553

    CAS  PubMed  Google Scholar 

  • Choi HS, Kang BS, Shim JH et al (2008) Cot, a novel kinase of histone H3, induces cellular transformation through up-regulation of c-fos transcriptional activity. FASEB J 22:113–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clayton AL, Rose S, Barratt MJ et al (2000) Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J 19:3714–3726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clements A, Poux AN, Lo WS et al (2003) Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell 12:461–473

    CAS  PubMed  Google Scholar 

  • Dai J, Sultan S, Taylor SS et al (2005) The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19:472–488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson MA, Bannister AJ, Göttgens B et al (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461:819–822

    CAS  PubMed Central  PubMed  Google Scholar 

  • de la Barre AE, Angelov D, Molla A et al (2001) The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation. EMBO J 20:6383–6393

    PubMed Central  PubMed  Google Scholar 

  • DeManno DA, Cottom JE, Kline MP et al (1999) Follicle-stimulating hormone promotes histone H3 phosphorylation on serine-10. Mol Endocrinol 13:91–105

    CAS  PubMed  Google Scholar 

  • Demidov D, Van Damme D, Geelen D et al (2005) Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants. Plant Cell 17:836–848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunn KL, Davie JR (2005) Stimulation of the Ras-MAPK pathway leads to independent phosphorylation of histone H3 on serine 10 and 28. Oncogene 24:3492–3502

    CAS  PubMed  Google Scholar 

  • De Souza CP, Osmani AH, Wu LP et al (2000) Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell 102:293–302

    PubMed  Google Scholar 

  • Dyson MH, Thomson S, Inagaki M et al (2005) MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. J Cell Sci 118:2247–2259

    CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479

    CAS  PubMed  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL et al (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122

    CAS  PubMed  Google Scholar 

  • Fuchs J, Demidov D, Houben A et al (2006) Chromosomal histone modification patterns-from conservation to diversity. Trends Plant Sci 11:199–208

    CAS  PubMed  Google Scholar 

  • Garske AL, Oliver SS, Wagner EK et al (2010) Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat Chem Biol 6:283–290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaudin V, Libault M, Pouteau S et al (2001) Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development 128:4847–4858

    CAS  PubMed  Google Scholar 

  • Gehani SS, Agrawal-Singh S, Dietrich N et al (2010) Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39:886–900

    CAS  PubMed  Google Scholar 

  • Gernand D, Demidov D, Houben A (2003) The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenet Genome Res 101:172–176

    CAS  PubMed  Google Scholar 

  • Goto H, Tomono Y, Ajiro K et al (1999) Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274:25543–25549

    CAS  PubMed  Google Scholar 

  • Goto H, Yasui Y, Nigg EA, Inagaki M (2002) Aurora-B phosphorylates Histone H3 at serine 28 with regard to the mitotic chromosome condensation. Genes Cells 7:11–17

    CAS  PubMed  Google Scholar 

  • Goutte-Gattat D, Shuaib M, Ouararhni K et al (2013) Phosphorylation of the CENP-A amino-terminus in mitotic centromeric chromatin is required for kinetochore function. Proc Natl Acad Sci U S A 110:8579–8584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Granot G, Sikron-Persi N, Li Y et al (2009) Phosphorylated H3S10 occurs in distinct regions of the nucleolus in differentiated leaf cells. Biochim Biophys Acta 1789:220–224

    CAS  PubMed  Google Scholar 

  • Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the "H3 barcode hypothesis". Proc Natl Acad Sci U S A 103:6428–6435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hake SB, Garcia BA, Kauer M et al (2005) Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci U S A 102:6344–6349

    CAS  PubMed Central  PubMed  Google Scholar 

  • He Z, Ma WY, Liu G et al (2003) Arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2, and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1. J Biol Chem 278:10588–10593

    CAS  PubMed  Google Scholar 

  • Healy S, Khan P, He S et al (2012) Histone H3 phosphorylation, immediate-early gene expression, and the nucleosomal response: a historical perspective. Biochem Cell Biol 90:39–54

    CAS  PubMed  Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA et al (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    CAS  PubMed  Google Scholar 

  • Hirota T, Lipp JJ, Toh BH et al (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180

    CAS  PubMed  Google Scholar 

  • Houben A, Wako T, Furushima-Shimogawara R et al (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J 18:675–679

    CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Rutten T et al (2005) Novel phosphorylation of histone H3 at threonine 11 that temporally correlates with condensation of mitotic and meiotic chromosomes in plant cells. Cytogenet Genome Res 109:148–155

    CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Caperta AD et al (2007) Phosphorylation of histone H3 in plants-a dynamic affair. Biochim Biophys Acta 1769:308–315

    CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Karimi-Ashtiyani R (2013) Epigenetic control of cell division. In: Grafi G, Ohad N (eds) Epigenetic memory and control in plants. Springer-Verlag, Berlin, pp 155–175

    Google Scholar 

  • Hsu JY, Sun ZW, Li X et al (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279–291

    CAS  PubMed  Google Scholar 

  • Hurd PJ, Bannister AJ, Halls K et al (2009) Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J Biol Chem 284:16575–16583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  • Jeong BR, Wu-Scharf D, Zhang C et al (2002) Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci U S A 99:1076–1081

    CAS  PubMed Central  Google Scholar 

  • Jouannic S, Champion A, Segui-Simarro JM et al (2001) The protein kinases AtMAP3Kepsilon1 and BnMAP3Kepsilon1 are functional homologues of S. pombe cdc7p and may be involved in cell division. Plant J 26:637–649

    CAS  PubMed  Google Scholar 

  • Karimi-Ashtiyani R, Houben A (2013) In vitro phosphorylation of histone h3 at threonine 3 by Arabidopsis haspin is strongly influenced by posttranslational modifications of adjacent amino acids. Mol Plant 6:574–576

    CAS  PubMed  Google Scholar 

  • Kaszas E, Cande WZ (2000) Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin. J Cell Sci 113:3217–3226

    CAS  PubMed  Google Scholar 

  • Kawabe A, Matsunaga S, Nakagawa K et al (2005) Characterization of plant Aurora kinases during mitosis. Plant Mol Biol 58:1–13

    CAS  PubMed  Google Scholar 

  • Kelly AE, Ghenoiu C, Xue JZ et al (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330:235–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  • Kunitoku N, Sasayama T, Marumoto T et al (2003) CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev Cell 5:853–864

    CAS  PubMed  Google Scholar 

  • Kurihara D, Matsunaga S, Kawabe A et al (2006) Aurora kinase is required for chromosome segregation in tobacco BY-2 cells. Plant J 48:572–580

    CAS  PubMed  Google Scholar 

  • Kurihara D, Matsunaga S, Omura T et al (2011) Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase. BMC Plant Biol 11:73

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lau PN, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci U S A 108:2801–2806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J et al (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2443–2451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Xi W, Shen L et al (2009) Regulation of floral patterning by flowering time genes. Dev Cell 16:711–722

    CAS  PubMed  Google Scholar 

  • Lo WS, Trievel RC, Rojas JR et al (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5:917–926

    CAS  PubMed  Google Scholar 

  • Lo WS, Duggan L, Emre NC et al (2001) Snf1 – a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142–1146

    CAS  PubMed  Google Scholar 

  • Lo WS, Gamache ER, Henry KW et al (2005) Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms. EMBO J 24:997–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loidl P (2004) A plant dialect of the histone language. Trends Plant Sci 9:84–90

    CAS  PubMed  Google Scholar 

  • Macdonald N, Welburn JP, Noble ME et al (2005) Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol Cell 20:199–211

    CAS  PubMed  Google Scholar 

  • Mahadevan LC, Willis AC, Barratt MJ (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid and protein synthesis inhibitors. Cell 65:775–783

    CAS  PubMed  Google Scholar 

  • Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891

    CAS  PubMed  Google Scholar 

  • Manzanero S, Rutten T, Kotseruba V, Houben A (2002) Alterations in the distribution of histone H3 phosphorylation in mitotic plant chromosomesin response to cold treatment and the protein phosphatase inhibitor cantharidin. Chromosome Res 10:467–476

    CAS  PubMed  Google Scholar 

  • McKittrick E, Gafken PR, Ahmad K et al (2004) Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci U S A 101:1525–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metzger E, Wissmann M, Yin N et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    CAS  PubMed  Google Scholar 

  • Metzger E, Yin N, Wissmann M et al (2008) Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 10:53–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metzger E, Imhof A, Patel D et al (2010) Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464:792–796

    CAS  PubMed  Google Scholar 

  • Meyer KD, Donner AJ, Knuesel MT et al (2008) Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J 27:1447–1457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ong CT, Corces VG (2011) Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 12:283–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Cadahía B, Drobic B, Davie JR (2009) H3 phosphorylation: dual role in mitosis and interphase. Biochem Cell Biol 87:695–709

    PubMed  Google Scholar 

  • Polioudaki H, Markaki Y, Kourmouli N, Dialynas G, Theodoropoulos PA, Singh PB, Georgatos SD (2004) Mitotic phosphorylation of histone H3 at threonine 3. FEBS Lett 560:39–44

    CAS  PubMed  Google Scholar 

  • Preuss U, Landsberg G, Scheidtmann KH (2003) Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res 31:878–885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prigent C, Dimitrov S (2003) Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116:3677–3685

    CAS  PubMed  Google Scholar 

  • Ravi M, Kwong PN, Menorca RM et al (2010) The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186:461–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richie CT, Golden A (2005) Chromosome segregation: Aurora B gets Tousled. Curr Biol 15:R379–R382

    CAS  PubMed  Google Scholar 

  • Rogers E, Bishop JD, Waddle JA et al (2002) The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J Cell Biol 157:219–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi V, Locatelli S, Varotto S et al (2007) Maize histone deacetylase hda101 is involved in plant development, gene transcription, and sequence-specific modulation of histone modification of genes and repeats. Plant Cell 19:1145–1162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawicka A, Seiser C (2012) Histone H3 phosphorylation – a versatile chromatin modification for different occasions. Biochimie 94:2193–2201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimada M, Niida H, Zineldeen DH et al (2008) Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132:221–232

    CAS  PubMed  Google Scholar 

  • Sokol A, Kwiatkowska A, Jerzmanowski A et al (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227:245–254

    CAS  PubMed  Google Scholar 

  • Soloaga A, Thomson S, Wiggin GR et al (2003) MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 22:2788–2797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP et al (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamada H, Thuan NV, Reed P et al (2006) Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol Cell Biol 26:1259–1271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomson S, Clayton AL, Hazzalin CA et al (1999) The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J 18:4779–4793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tiwari VK, Stadler MB, Wirbelauer C et al (2011) A chromatin-modifying function of JNK during stem cell differentiation. Nat Genet 44:94–100

    PubMed  Google Scholar 

  • Turck F, Roudier F, Farrona S et al (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86

    PubMed Central  PubMed  Google Scholar 

  • Van Damme D, De Rybel B, Gudesblat G et al (2011) Arabidopsis α Aurora kinases function in formative cell division plane orientation. Plant Cell 23:4013–4024

    PubMed Central  PubMed  Google Scholar 

  • van Dijk K, Marley KE, Jeong BR et al (2005) Monomethyl histone H3 lysine 4 as an epigenetic mark for silenced euchromatin in Chlamydomonas. Plant Cell 17:2439–2453

    PubMed Central  PubMed  Google Scholar 

  • Van Hooser A, Goodrich DW, Allis CD et al (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J Cell Sci 111:3497–3506

    PubMed  Google Scholar 

  • Van Hooser AA, Ouspenski II, Gregson HC et al (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114:3529–3542

    PubMed  Google Scholar 

  • Walter W, Clynes D, Tang Y et al (2008) 14-3-3 Interaction with histone H3 involves a dual modification pattern of phosphoacetylation. Mol Cell Biol 28:2840–2849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Zhang W, Jin Y et al (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105:433–443

    CAS  PubMed  Google Scholar 

  • Wang D, Harper JF, Gribskov M (2003) Systematic trans-genomic comparison of protein kinases between Arabidopsis and Saccharomyces cerevisiae. Plant Physiol 132:2152–2165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang F, Dai J, Daum JR et al (2010) Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330:231–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Y, Yu L, Bowen J et al (1999) Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97:99–109

    CAS  PubMed  Google Scholar 

  • Winter S, Simboeck E, Fischle W et al (2008) 14-3-3 Proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J 27:88–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wissmann M, Yin N, Müller JM et al (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9:347–353

    CAS  PubMed  Google Scholar 

  • Yamagishi Y, Honda T, Tanno Y et al (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330:239–243

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Verma UN, Prajapati S et al (2003) Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423:655–659

    CAS  PubMed  Google Scholar 

  • Yang W, Xia Y, Hawke D et al (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yun M, Wu J, Workman J et al (2011) Readers of histone modifications. Cell Res 21:564–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeitlin SG, Barber CM, Allis CD et al (2001a) Differential regulation of CENP-A and histone H3 phosphorylation in G2/M. J Cell Sci 114:653–661

    CAS  PubMed  Google Scholar 

  • Zeitlin SG, Shelby RD, Sullivan KF (2001b) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155:1147–1157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Li X, Marshall JB et al (2005) Phosphoserines on maize CENTROMERIC HISTONE H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation. Plant Cell 17:572–583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Germann S, Blus BJ et al (2007) The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol 14:869–871

    CAS  PubMed  Google Scholar 

  • Zhong S, Jansen C, She QB et al (2001) Ultraviolet B-induced phosphorylation of histone H3 at serine 28 is mediated by MSK1. J Biol Chem 276:33213–33219

    CAS  PubMed  Google Scholar 

  • Zhou H, Song LP, Li DW (2006) Dynamic distribution of Thr3-phosphorylated histone H3 in CHO cells in mitosis. Folia Biol (Praha) 52:156–160

    CAS  Google Scholar 

  • Zippo A, De Robertis A, Serafini R et al (2007) PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9:932–944

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.A.C.-M. is supported by a Young Investigator grant from the São Paulo Research Foundation (FAPESP 2011/50483-2). I.M. is recipient of a FAPESP fellowship (2013/01484-1). We apologize to all researchers whose contributions could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Armando Casas-Mollano .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moraes, I., Casas-Mollano, J.A. (2014). Histone H3 Phosphorylation in Plants and Other Organisms. In: Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-07971-4_4

Download citation

Publish with us

Policies and ethics