Skip to main content

The Role of Germinally Inherited Epialleles in Plant Breeding

  • Chapter
  • First Online:
Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications

Abstract

Plant breeding focuses on repeated selection of individuals with desired traits from phenotypically variable populations. Breeders may be able to explain the broad sense heritability for a trait, the proportion of the total trait variance between genetically distinct lines compared to within a line, or the narrow sense heritability, the proportion of the trait variation that is due to the additive effects of genes. However, breeders rarely know the underlying causes of the observed genetic variation. In this chapter, we take a trait-focused approach to review the degree to which plant variation is due to epigenetic variation and to what degree epigenetic factors are suitable for selection in plant breeding. We suggest that the amount of trait variation that is due to heritable differences in chromatin states is far lower than variation due to changes in the primary sequence of DNA. In addition, epigenetic states are often unstable, and selection on only a small number of epigenetic states could lead to consistent plant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimoto K, Katakami H, Kim H-J, Ogawa E, Sano CM, Wada Y, Sano H (2007) Epigenetic inheritance in rice plants. Ann Bot 100:205–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alleman M, Sidorenko L, McGinnis K, Seshadri V, Dorweiler JE, White J, Sikkink K, Chandler VL (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442:295–298

    Article  CAS  PubMed  Google Scholar 

  • Amyot LM (1997) Characterization of 5-azacytidine-induced early flowering lines in flax. University of Waterloo, Waterloo, ON

    Google Scholar 

  • Banks JA, Masson P, Fedoroff N (1988) Molecular mechanisms in the developmental regulation of the maize suppressor-mutator transposable element. Genes Dev 2:1364–1380

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Sakai H, Jack T, Weigel D, Mayer U, Meyerowitz EM (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114:599–615

    CAS  PubMed  Google Scholar 

  • Brink RA (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41:872–889

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandler VL (2010) Paramutation’s properties and puzzles. Science 330:628–629

    Article  CAS  PubMed  Google Scholar 

  • Coe EH (1966) The properties, origin, and mechanism of conversion-type inheritance at the b locus in maize. Genetics 53:1035–1063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  CAS  PubMed  Google Scholar 

  • Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13:153–162

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff NV (1999) The suppressor-mutator element and the evolutionary riddle of transposons. Genes Cells 4:11–19

    Article  CAS  PubMed  Google Scholar 

  • Fieldes MA (1994) Heritable effects of 5-azacytidine treatments on the growth and development of flax (Linum usitatissimum) genotrophs and genotypes. Genome 37:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fieldes MA, Amyot LM (1999) Epigenetic control of early flowering in flax lines induced by 5-azacytidine applied to germinating seed. J Hered 90:199–206

    Article  CAS  Google Scholar 

  • Fieldes MA, Schaeffer SM, Krech MJ, Brown JCL (2005) DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theor Appl Genet 111:136–149

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A 93:8449–8454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler RG, Peterson PA (1978) An altered state of a specific en regulatory element induced in a maize tiller. Genetics 90:761–782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gemma C, Ramagopalan SV, Down TA, Beyan H, Hawa MI, Holland ML, Hurd PJ, Giovannoni G, Leslie RD, Ebers GC et al (2013) Inactive or moderately active human promoters are enriched for inter-individual epialleles. Genome Biol 14:1–11

    Article  Google Scholar 

  • Gustafsson Ã… (1979) Linnaeus’ Peloria: the history of a monster. Theor Appl Genet 54:241–248

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS (1990) Gene expression and parental dominance in hybrid plants. Development 108:21–28

    Google Scholar 

  • Hirochika H, Okamoto H, Kakutani T (2000) Silencing of retrotransposons in arabidopsis and reactivation by the ddm1 mutation. Plant Cell Online 12:357–368

    Article  CAS  Google Scholar 

  • House M (2010) Molecular studies of 5-azacytidine-induced early-flowering lines of flax. Thesis dissertation. Compr. [Internet]. http://scholars.wlu.ca/etd/966

  • Ito T, Sakai H, Meyerowitz EM (2003) Whorl-specific expression of the superman gene of arabidopsis is mediated by cis elements in the transcribed region. Curr Biol 13:1524–1530

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated superman epigenetic alleles in arabidopsis. Science 277:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • JanouÅ¡ek B, Å iroký J, Vyskot B (1996) Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album. Mol Gen Genet MGG 250:483–490

    Article  Google Scholar 

  • Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22:94–97

    Article  CAS  PubMed  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

    Article  PubMed Central  PubMed  Google Scholar 

  • Jorgensen R (1993) The germinal inheritance of epigenetic information in plants. Philos Trans R Soc Lond B Biol Sci 339:173–181

    Article  Google Scholar 

  • Kakutani T (1997) Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J 12:1447–1451

    Article  CAS  PubMed  Google Scholar 

  • Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ (1996) Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci 93:12406–12411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • King G (1995) Morphological development in brassica-oleracea is modulated by in-vivo treatment with 5-azacytidine. J Hort Sci 70:333–342

    CAS  Google Scholar 

  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1957) The suppressor-mutator system of control of gene action in maize. Carnegie Znst Wash Yearbook 57:415–431

    Google Scholar 

  • McClintock B (1965) Components of action of the regulators Spm and Ac. Carnegie Inst Wash Year b 64:527–536

    Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411:212–214

    Article  CAS  PubMed  Google Scholar 

  • Patterson GI, Thorpe CJ, Chandler VL (1993) Paramutation, an allelic interaction, is associated with a stable and heritable reduction of transcription of the maize b regulatory gene. Genetics 135:881–894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patterson GI, Kubo KM, Shroyer T, Chandler VL (1995) Sequences required for paramutation of the maize b gene map to a region containing the promoter and upstream sequences. Genetics 140:1389–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson PA (1966) Phase variation of regulatory elements in maize. Genetics 54:249–266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinders J, Wulff BBH, Mirouze M, Marí-Ordóñez A, Dapp M, Rozhon W, Bucher E, Theiler G, Paszkowski J (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23:939–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roux F, Colomé-Tatché M, Edelist C, Wardenaar R, Guerche P, Hospital F, Colot V, Jansen RC, Johannes F (2011) Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature. Genetics 188:1015–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sano H, Kamada I, Youssefian S, Katsumi M, Wabiko H (1990) A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Mol Gen Genet MGG 220:441–447

    Article  CAS  Google Scholar 

  • Saze H, Kakutani T (2007) Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J 26:3641–3652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scortecci KC, Dessaux Y, Petit A, van Sluys M-A (1997) Somatic excision of the Ac transposable element in transgenic Arabidopsis thaliana after 5-azacytidine treatment. Plant Cell Physiol 38:336–343

    Article  CAS  PubMed  Google Scholar 

  • Singer T, Yordan C, Martienssen RA (2001) Robertson’s mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1). Genes Dev 15:591–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soppe WJJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJM (2000) The late flowering phenotype of FWA mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802

    Article  CAS  PubMed  Google Scholar 

  • Stam M, Belele C, Dorweiler JE, Chandler VL (2002) Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev 16:1906–1918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga MF et al (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604

    Article  CAS  PubMed  Google Scholar 

  • Thompson AJ, Tor M, Barry CS, Vrebalov J, Orfila C, Jarvis MC, Giovannoni JJ, Grierson D, Seymour GB (1999) Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol 120:383–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  • Zimmermann FK, Scheel I (1984) Genetic effects of 5-azacytidine in Saccharomyces cerevisiae. Mutat Res Lett 139:21–24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis Lukens .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

House, M., Lukens, L. (2014). The Role of Germinally Inherited Epialleles in Plant Breeding. In: Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-07971-4_1

Download citation

Publish with us

Policies and ethics