Protein Name Recognition Based on Dictionary Mining and Heuristics

  • Shian-Hua Lin
  • Shao-Hong Ding
  • Wei-Sheng Zeng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)


We propose a novel method that integrates dictionary, heuristics and data mining approaches to efficiently and effectively recognize exact protein names from the literature. According to the protein name dictionary and heuristic rules published in related studies, core tokens of protein names can be efficiently detected. However, exact boundaries of protein names are hard to be identified. By regarding tokens of a protein name as items within a transaction, we apply mining associations to discover significant sequential patterns (SSPs) from the protein name dictionary. Based on SSPs, protein name parts are extended from core tokens to left and right boundaries for correctly recognizing the protein name. Based on Yapex101 corpus, Protein Name Recognition System (PNRS) achieves the F-score (74.49%) better than existing systems and papers.


protein name recognition association mining dictionary mining heuristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD Conference, pp. 207–216 (1993)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of International Conference on Very Large Databases, Santiago, Chile, pp. 487–499 (September 1994)Google Scholar
  3. 3.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of International Conference on Data Engineering, Taipei, Taiwan, pp. 3–14 (March 1995)Google Scholar
  4. 4.
    Chang, J.T., Schutze, H., Altman, R.: GAPSCORE: finding gene and protein names one word at a time. Bioinformatics 20, 216–225 (2004)CrossRefGoogle Scholar
  5. 5.
    Collier, N., Nobata, C., Tsujii, J.: Extracting the names of genes and gene products with a hidden markov model. In: Proceedings of the 18th International Conference on Computational Linguistics, pp. 201–207 (2000)Google Scholar
  6. 6.
    Egorov, S., Yuryev, A., Daraselia, N.: A simple and practical dictionary-based approach for identification of proteins in MEDLINE abstracts. Journal of the American Medical Informatics Association 11(3), 174–178 (2004)CrossRefGoogle Scholar
  7. 7.
    Franzen, K., Eriksson, G., Olsson, F., Asker, L., Liden, P., Cöster, J.: Protein names and how to find them. International Journal of Medical Informatics 67(3), 49–61 (2002)CrossRefGoogle Scholar
  8. 8.
    Fukuda, K., Tsunoda, T., Tamura, A., Takagi, T.: Toward information extraction: identifying protein names from biological papers. In: Proceedings of the 3rd Pacific Symposium on Biocomputing, pp. 707–718 (1998)Google Scholar
  9. 9.
    Hanisch, D., Fluck, J., Mevissen, H., Zimmer, R.: Playing biology’s name game: Identifying protein names in scientific text. In: Proceedings of the 8th Pacific Symposium on Biocomputing, pp. 403–414 (2003)Google Scholar
  10. 10.
    Huang, M.L., Zhu, X.Y., Hao, Y., Payan, D.G., Qu, K.B., Li, M.: Discovering patterns to extract protein-protein interactions from full texts. Bioinformatics 20, 3604–3612 (2004)CrossRefGoogle Scholar
  11. 11.
    Kazama, J., Makino, T., Ohta, Y., Tsujii, J.: Tuning support vector machines for biomedical named entity recognition. In: Proceedings of the ACL 2002 Workshop on Natural Language Processing in the Biomedical Domain, pp. 1–8 (2002)Google Scholar
  12. 12.
    Krauthammer, M., Rzhetsky, A., Morozov, P., Friedman, C.: Using BLAST for identifying gene and protein names in journal articles. Gene 259(1-2), 245–252 (2000)CrossRefGoogle Scholar
  13. 13.
    Kou, Z., Cohen, W.W., Murphy, R.F.: High-recall protein entity recognition using a dictionary. Bioinformatics 21, i266–i273 (2005)Google Scholar
  14. 14.
    Lin, S.-H., Shih, C.-S., Chen, M.C., Ho, J.-M., Ko, M.-T., Huang, Y.-M.: Extracting Classification Knowledge of Internet Documents: A Semantics Approach. In: Proceedings of the 21st ACM SIGIR Conference, pp. 241–249 (1998)Google Scholar
  15. 15.
    Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches. Science 227, 1435–1441 (1985)CrossRefGoogle Scholar
  16. 16.
    Liu, H., Hu, Z.-Z., Zhang, J., Wu, C.: BioThesaurus: a web-based thesaurus of protein and gene names. Bioinformatics 22(1), 103–105 (2006)CrossRefGoogle Scholar
  17. 17.
    Malik, R., Franke, L., Siebes, A.: Combination of text-mining algorithms increases the performance. Bioinformatics 22, 2151–2157 (2006)CrossRefGoogle Scholar
  18. 18.
    Mika, S., Rost, B.: Protein names precisely peeled off free text. Bioinformatics 20, 241–247 (2004)CrossRefGoogle Scholar
  19. 19.
    Nobata, C., Collier, N., Tsujii, J.: Automatic term identification and classification in biology texts. In: Proceedings of the 5th Natural Language Pacific Rim Symposium, pp. 369–375 (1999)Google Scholar
  20. 20.
    Salton, G., McGill, M.J. (1983) Introduction to Modern Information Retrieval. McGraw-Hill (1983)Google Scholar
  21. 21.
    Seki, K., Mostafa, J.: An approach to protein name extraction using heuristics and a dictionary. In: Proceedings of the American Society for Information Science and Technology Annual Conference, ASIST (2003)Google Scholar
  22. 22.
    Tanabe, L., Wilbur, W.J.: Tagging gene and protein names in biomedical texts. Bioinformatics 18, 1124–1132 (2003)CrossRefGoogle Scholar
  23. 23.
    Tsai, T.-H., Chou, W.-C., Wu, S.-H., Sung, T.-Y., Hsiang, J., Hsu, W.-L.: Integrating linguistic knowledge into a conditional random field framework to identify biomedical named entities. Expert Systems with Applications 30, 117–128 (2006)CrossRefGoogle Scholar
  24. 24.
    Yeganova, L., Smith, L., Wilbur, W.J.: Identification of related gene/protein names based on an HMM of name variations. Computational Biology and Chemistry 28(2), 97–107 (2004)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zhou, G.D., Zhang, J., Su, J., Shen, D., Tan, C.L.: Recognizing names in biomedical texts: A machine learning approach. Bioinformatics 20(7), 1178–1190 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shian-Hua Lin
    • 1
  • Shao-Hong Ding
    • 1
  • Wei-Sheng Zeng
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Chi Nan UniversityPuliTaiwan

Personalised recommendations