Edge-Clique Covers of the Tensor Product

  • Wing-Kai Hon
  • Ton Kloks
  • Hsiang-Hsuan Liu
  • Yue-Li Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)


In this paper we study the edge-clique cover number of the tensor product Kn ×Kn. We derive an easy lowerbound for the edge-clique number of graphs in general. We prove that, when n is prime θe(Kn ×Kn) matches the lowerbound. Moreover, we prove that θe(Kn ×Kn) matches the lowerbound if and only if a projective plane of order n exists. We also show an easy upperbound for θe(Kn ×Kn) in general, and give its limiting value when the Riemann hypothesis is true.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, M.-S., Müller, H.: On the tree-degree of graphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 44–54. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Cramér, H.: On the order of magnitude of the difference between consecutive prime numbers. Acta Arithmetica 2, 23–46 (1936)Google Scholar
  3. 3.
    Cygan, M., Pilipczuk, M., Pilipczuk, M.: Known algorithms for Edge Clique Cover are probably optimal. In: Proceedings of SODA 2013, pp. 1044–1053 (2013)Google Scholar
  4. 4.
    Bruijn, N.G., Erdős, D., On, P.: a combinatorial problem. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen 51, 1277–1279 (1948)MATHGoogle Scholar
  5. 5.
    Erdős, P., Goodman, A., Pósa, L.: The representation of a graph by set intersections. Canadian Journal of Mathematics 18, 106–112 (1966)CrossRefGoogle Scholar
  6. 6.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction and exact algorithms for clique cover. ACM Journal of Experimental Algorithmics 13, article 2 (2009)Google Scholar
  7. 7.
    Gyárfás, A.: A simple lowerbound on edge covering by cliques. Discrete Mathematics 85, 103–104 (1990)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hoover, D.N.: Complexity of graph covering problems for graphs of low degree. Journal of Combinatorial Mathematics and Combinatorial Computing 11, 187–208 (1992)MATHMathSciNetGoogle Scholar
  9. 9.
    Kong, J., Wu, Y.: On economical set representations of graphs. Discrete Mathematics and Theoretical Computer Science 11, 71–96 (2009)MATHMathSciNetGoogle Scholar
  10. 10.
    Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering edges by cliques with regard to keyword conflicts and intersection graphs. Communications of the ACM 21, 135–139 (1978)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Moradi, S.: A note on tensor product of graphs. Iranian Journal of Mathematical Sciences and Informatics 7, 73–81 (2012)MathSciNetGoogle Scholar
  12. 12.
    Opsut, R.J.: On the computation of the competition number of a graph. SIAM Journal on Algebraic Discrete Methods 3, 420–428 (1982)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Orlin, J.B.: Contentment in graph theory: Covering graphs with cliques. Indagationes Mathematicae 80, 406–424 (1977)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Roberts, F.S.: Food webs, competition graphs, and the boxicity of ecological phase space. In: Theory and Applications of Graphs, pp. 477–490 (1978)Google Scholar
  15. 15.
    Roberts, F.S.: Applications of edge coverings by cliques. Discrete Applied Mathematics 10, 93–109 (1985)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Weisstein, E.: Bertrand’s postulate. Wolfram MathworldGoogle Scholar
  17. 17.
    Weisstein, E.: Projective plane. Wolfram MathworldGoogle Scholar
  18. 18.
    Cameron, P.J.: Projective and Polar Spaces. QMW Maths Notes 13 (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wing-Kai Hon
    • 1
  • Ton Kloks
    • 1
  • Hsiang-Hsuan Liu
    • 1
    • 3
  • Yue-Li Wang
    • 2
  1. 1.National Tsing Hua UniversityTaiwan
  2. 2.National Taiwan University of Science and TechnologyTaiwan
  3. 3.University of LiverpoolUK

Personalised recommendations