The Complexity of Degree Anonymization by Vertex Addition

  • Robert Bredereck
  • Vincent Froese
  • Sepp Hartung
  • André Nichterlein
  • Rolf Niedermeier
  • Nimrod Talmon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)


Motivated by applications in privacy-preserving data publishing, we study the problem of making an undirected graph k-anonymous by adding few vertices (together with incident edges). That is, after adding these “dummy vertices”, for every vertex degree d in the resulting graph, there shall be at least k vertices with degree d. We explore three variants of vertex addition (justified by real-world considerations) and study their (parameterized) computational complexity. We derive mostly (worst-case) intractability results, even for very restricted cases (including trees or bounded-degree graphs) but also obtain a few encouraging fixed-parameter tractability results.


Regular Graph Input Graph Vertex Degree Degree Sequence Block Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bredereck, R., Hartung, S., Nichterlein, A., Woeginger, G.J.: The complexity of finding a large subgraph under anonymity constraints. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 152–162. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Casas-Roma, J., Herrera-Joancomartí, J., Torra, V.: An algorithm for k-degree anonymity on large networks. In: Proc. ASONAM 2013, pp. 671–675. ACM Press (2013)Google Scholar
  3. 3.
    Chester, S., Kapron, B.M., Ramesh, G., Srivastava, G., Thomo, A., Venkatesh, S.: Why Waldo befriended the dummy? k-anonymization of social networks with pseudo-nodes. Social Netw. Analys. Mining 3(3), 381–399 (2013)CrossRefGoogle Scholar
  4. 4.
    Chester, S., Kapron, B.M., Srivastava, G., Venkatesh, S.: Complexity of social network anonymization. Social Netw. Analys. Mining 3(2), 151–166 (2013)CrossRefGoogle Scholar
  5. 5.
    Clarkson, K.L., Liu, K., Terzi, E.: Towards identity anonymization in social networks. In: Link Mining: Models, Algorithms, and Applications, pp. 359–385. Springer (2010)Google Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer (2013)Google Scholar
  7. 7.
    Erdős, P., Kelly, P.: The minimal regular graph containing a given graph. Amer. Math. Monthly 70, 1074–1075 (1963)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. Eur. J. Combin. 34(3), 541–566 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  10. 10.
    Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complexity analysis of degree anonymization in graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 594–606. Springer, Heidelberg (2013); To appear in Information and ComputationGoogle Scholar
  11. 11.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: ACM SIGMOD Conference, SIGMOD 2008, pp. 93–106. ACM (2008)Google Scholar
  13. 13.
    Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North-Holland (1986)Google Scholar
  14. 14.
    Lu, X., Song, Y., Bressan, S.: Fast identity anonymization on graphs. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part I. LNCS, vol. 7446, pp. 281–295. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Lueker, G.S.: Two NP-complete problems in nonnegative integer programming. Technical report. Computer Science Laboratory, Princeton University (1975)Google Scholar
  16. 16.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  17. 17.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS. LIPIcs, vol. 5, pp. 17–32. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2010)Google Scholar
  18. 18.
    Zhou, B., Pei, J.: The k-anonymity and l-diversity approaches for privacy preservation in social networks against neighborhood attacks. Knowl. Inf. Syst. 28(1), 47–77 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Robert Bredereck
    • 1
  • Vincent Froese
    • 1
  • Sepp Hartung
    • 1
  • André Nichterlein
    • 1
  • Rolf Niedermeier
    • 1
  • Nimrod Talmon
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany

Personalised recommendations