An Optimal Context for Information Retrieval

  • Rabeb Mbarek
  • Mohamed Tmar
  • Hawete Hattab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)


In general, document representation and ranking are dependent on context. In this work, we introduce the notion of optimal context, i.e. a context which gives the best ranking. We develop an algorithm to compute this optimal context and we show that it has an effect of query reformulation. Our approach gives substantial improvements in retrieval performance over known models.


optimal context relevance feedback vector space model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Campos, L.M.D., Huete, J.F., Fernndez-Luna, J.M., Spain, J.: Document Instantiation for Relevance Feedback in the Bayesian Network Retrieval Model (2001)Google Scholar
  2. 2.
    Croft, W.B., Harper, D.: Using Probabilistic Models of Information without Relevance Information. Journal of Documentation 35(4), 285–295 (1979)CrossRefGoogle Scholar
  3. 3.
    Croft, W.B., Lavrendo, S.C.T.V.: Relevance Feedback and Personalization: a Language Modelling Perspective. In: CIKM 2006, pp. 49–54 (2006); Proceedings of the Joint DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries (2001)Google Scholar
  4. 4.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the ASIS 41(6), 391–407 (1990)Google Scholar
  5. 5.
    Ide, E.: New Experiments in Relevance Feedback. In: The SMART Retrieval System-Experiments in Automatic Document Processing, pp. 337–354 (1971)Google Scholar
  6. 6.
    Mbarek, R., Tmar, M.: Relevance Feedback Method Based on Vector Space Basis Change. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 342–347. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Melucci, M.: Context modeling and discovery using vector space bases. In: Proceedings of the ACM Conference on Information and Knowledge Management (CIKM), Bremen, Germany, pp. 808–815. ACM Press (2005)Google Scholar
  8. 8.
    Melucci, M.: A Basis for Information Retrieval in Context. ACM Trans. Inf. Syst. 26(3), 1–41 (2008)CrossRefGoogle Scholar
  9. 9.
    van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, UK (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Robertson, S., Sparck-Jones, K.: Relevance weighting of search terms. Journal of the American Society of Information Science, 129–146 (1976)Google Scholar
  11. 11.
    Rocchio, J.: Relevance feedback in information retrieval. The SMART Retrieval System-experiments in Automatic Document Processing, 313–323 (1971)Google Scholar
  12. 12.
    Ruthven, I., Lalmas, M., Rijsbergen, K.: Ranking Expansion Terms with Partial and Ostensive Evidence. In: Fourth International Conference on Conceptions of Library and Information Science: Emerging Frameworks and Methods, Seattle, WA, USA, pp. 199–219 (2002)Google Scholar
  13. 13.
    Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Communications of the ACM 18(11), 613–620 (1975)CrossRefzbMATHGoogle Scholar
  14. 14.
    Salton, G.: Automatic Text Processing: The Transformation, Analysis and Retrieval of Information by Computer. Addison-Wesley (1989)Google Scholar
  15. 15.
    Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at TREC. TREC, 21–30 (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rabeb Mbarek
    • 1
  • Mohamed Tmar
    • 1
  • Hawete Hattab
    • 2
  1. 1.Multimedia Information systems and Advanced Computing Laboratory, High Institute of Computer Science and MultimediaUniversity of SfaxSfaxTunisia
  2. 2.Umm Al-Qura UniversitySaudi Arabia

Personalised recommendations