The Competitive Diffusion Game in Classes of Graphs

  • Elham Roshanbin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)


We study a game based on a model for the spread of influence through social networks. In game theory, a Nash-equilibrium is a strategy profile in which each player’s strategy is optimized with respect to her opponents’ strategies. Here we focus on a specific two player case of the game. We show that there always exists a Nash-equilibrium for paths, cycles, trees, and Cartesian grids. We use the centroid of trees to find a Nash-equilibrium for a tree with a novel approach, which is simpler compared to previous works. We also explore the existence of Nash-equilibriums for uni-cyclic graphs, and offer some open problems.


Competitive information diffusion Nash-equilibriums Network game theory Social networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: A note on competitive diffusion through social networks. Information Processing Letters 110, 221–225 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barron, E.N.: Game Theory, An Introduction, 2nd edn. Wiley-Inter science, John Wiley and Sons, Hoboken, NJ (2008)zbMATHGoogle Scholar
  3. 3.
    Bhagat, S., Goyal, A., Lakshmanan, L.V.S.: Maximizing Product Adoption in Social Networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 603–612 (2012)Google Scholar
  4. 4.
    Dürr, C., Thang, N.K.: Nash equilibria in Voronoi games on graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17–28. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Immorlica, N., Kleinberg, J.M., Mahdian, M., Wexler, T.: The role of compatibility in the diffusion of technologies through social networks. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 75–83 (2007)Google Scholar
  6. 6.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD), pp. 137–146 (2003)Google Scholar
  7. 7.
    Mavronicolas, M., Monien, B., Papadopoulou, V.G., Schoppmann, F.: Voronoi games on cycle graphs. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 503–514. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Small, L., Mason, O.: Nash Equilibria for Competitive Information Diffusion on Trees. Information Processing Letters 113, 217–219 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Small, L., Mason, O.: Information diffusion on the iterated local transitivity model of online social networks. Discrete Applied Mathematics 161, 1338–1344 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Takehara, R., Hachimori, M., Shigeno, M.: A comment on pure-strategy Nash equilibria in competitive diffusion games. Information Processing Letters 112, 59–60 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall Inc., Upper Saddle River (2001)Google Scholar
  12. 12.
    Wilf, H.S.: The uniform selection of free trees. Journal of Algorithms 2, 204–207 (1981)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Elham Roshanbin
    • 1
  1. 1.Department of Mathematics and StatisticsDalhousie UniversityHalifaxCanada

Personalised recommendations