Advertisement

The Competitive Diffusion Game in Classes of Graphs

  • Elham Roshanbin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)

Abstract

We study a game based on a model for the spread of influence through social networks. In game theory, a Nash-equilibrium is a strategy profile in which each player’s strategy is optimized with respect to her opponents’ strategies. Here we focus on a specific two player case of the game. We show that there always exists a Nash-equilibrium for paths, cycles, trees, and Cartesian grids. We use the centroid of trees to find a Nash-equilibrium for a tree with a novel approach, which is simpler compared to previous works. We also explore the existence of Nash-equilibriums for uni-cyclic graphs, and offer some open problems.

Keywords

Competitive information diffusion Nash-equilibriums Network game theory Social networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: A note on competitive diffusion through social networks. Information Processing Letters 110, 221–225 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barron, E.N.: Game Theory, An Introduction, 2nd edn. Wiley-Inter science, John Wiley and Sons, Hoboken, NJ (2008)zbMATHGoogle Scholar
  3. 3.
    Bhagat, S., Goyal, A., Lakshmanan, L.V.S.: Maximizing Product Adoption in Social Networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 603–612 (2012)Google Scholar
  4. 4.
    Dürr, C., Thang, N.K.: Nash equilibria in Voronoi games on graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17–28. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Immorlica, N., Kleinberg, J.M., Mahdian, M., Wexler, T.: The role of compatibility in the diffusion of technologies through social networks. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 75–83 (2007)Google Scholar
  6. 6.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD), pp. 137–146 (2003)Google Scholar
  7. 7.
    Mavronicolas, M., Monien, B., Papadopoulou, V.G., Schoppmann, F.: Voronoi games on cycle graphs. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 503–514. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Small, L., Mason, O.: Nash Equilibria for Competitive Information Diffusion on Trees. Information Processing Letters 113, 217–219 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Small, L., Mason, O.: Information diffusion on the iterated local transitivity model of online social networks. Discrete Applied Mathematics 161, 1338–1344 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Takehara, R., Hachimori, M., Shigeno, M.: A comment on pure-strategy Nash equilibria in competitive diffusion games. Information Processing Letters 112, 59–60 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall Inc., Upper Saddle River (2001)Google Scholar
  12. 12.
    Wilf, H.S.: The uniform selection of free trees. Journal of Algorithms 2, 204–207 (1981)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Elham Roshanbin
    • 1
  1. 1.Department of Mathematics and StatisticsDalhousie UniversityHalifaxCanada

Personalised recommendations