Advertisement

Obtaining Split Graphs by Edge Contraction

  • Chengwei Guo
  • Leizhen Cai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)

Abstract

We study the parameterized complexity of the following Split Contraction problem: Given a graph G and an integer k as parameter, determine whether G can be modified into a split graph by contracting at most k edges. We show that Split Contraction can be solved in FPT time \(2^{O(k^2)}n^5\), but admits no polynomial kernel unless NP ⊆ coNP/poly.

Keywords

Input Graph Polynomial Kernel Chordal Graph Reduction Rule Split Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belmonte, R., Golovach, P.A., van ’t Hof, P., Paulusma, D.: Parameterized Complexity of Two Edge Contraction Problems with Degree Constraints. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 16–27. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58, 171–176 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cai, L., Guo, C.: Contracting few edges to remove forbidden induced subgraphs. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 97–109. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. In: Chekuri, C. (ed.) SODA 2014, pp. 122–141. SIAM (2014)Google Scholar
  6. 6.
    Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. Journal of Computer and System Sciences 78(1), 211–220 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cygan, M., Pilipczuk, M.: On fixed-parameter algorithms for split vertex deletion. arXiv:1208.1248 (2012)Google Scholar
  8. 8.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and iDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan, M.S.: Faster parameterized algorithms for deletion to split graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 107–118. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Increasing the minimum degree of a graph by contractions. Theoretical Computer Science 481, 74–84 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Golovach, P.A., van’t Hof, P., Paulusma, D.: Obtaining planarity by contracting few edges. Theoretical Computer Science 476, 38–46 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Guillemot, S., Marx, D.: A faster FPT algorithm for bipartite contraction. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 177–188. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Guo, J.: Problem kernels for NP-complete edge deletion problems: Split and related graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting graphs to paths and trees. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 55–66. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Heggernes, P., van’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges. In: Supratik, C., Amit, K. (eds.) FSTTCS 2011. LIPIcs, vol. 13, pp. 217–228. Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2011)Google Scholar
  16. 16.
    Lin, G.-H., Kearney, P.E., Jiang, T.: Phylogenetic k-root and steiner k-root. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Lokshtanov, D., Misra, N., Saurabh, S.: On the hardness of eliminating small induced subgraphs by contracting edges. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 243–254. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chengwei Guo
    • 1
  • Leizhen Cai
    • 1
  1. 1.Department of Computer Science and EngineeringThe Chinese University of Hong KongHong Kong S.A.R., China

Personalised recommendations