Advertisement

Partially Dynamic Single-Source Shortest Paths on Digraphs with Positive Weights

  • Wei Ding
  • Guohui Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)

Abstract

We examine several structural properties of single-source shortest paths and present a local search algorithm for the partially dynamic single-source shortest paths problem. Our algorithm works on both deterministic digraphs and undirected graphs. For a deterministic digraph with positive arc weights, our algorithm handles a single arc weight increase in \(O(n+\frac{n^2\log n}{m})\) expected time, where n is the number of nodes and m is the number of edges in the digraph. Specifically, our algorithm is an O(n) expected time algorithm when m = Ω(nlogn). This solves partially an open problem proposed by Demetrescu and Italiano (Journal of the ACM. 51(2004), 968–992).

Keywords

partially dynamic single-source shortest paths local search expected time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ausiello, G., Italiano, G.F., Marchetti-Spaccamela, A., Nanni, U.: Incremental algorithms for minimal length paths. Journal of Algorithms 12, 615–638 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bernstein, A.: Fully dynamic (2 + ε) approximate all-pairs shortest paths with fast query and close to linear update time. In: Proc. of 50th FOCS, pp. 693–702 (2009)Google Scholar
  3. 3.
    Bernstein, A., Roditty, L.: Improved dynamic algorithms for maintaining approximate shortest paths under deletions. In: Proc. of 22th SODA, pp. 1355–1365 (2011)Google Scholar
  4. 4.
    Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths. Journal of the ACM 51, 968–992 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic all pairs shortest path algorithms. ACM Transactions on Algorithms 2, 578–601 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dinitz, Y.: Dinitz’ algorithm: The original version and Even’s version. In: Essays in Memory of Shimon Even, pp. 218–240 (2006)Google Scholar
  8. 8.
    Even, S., Shiloach, Y.: An on-line edge-deletion problem. Journal of the ACM 28, 1–4 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fakcharoemphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time. In: Proc. of 42nd FOCS, pp. 232–241 (2001)Google Scholar
  10. 10.
    Friedrich, T., Hebbinghaus, N.: Average update times for fully-dynamic all-pairs shortest paths. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 692–703. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In: Proc. of 40th FOCS, pp. 81–99 (1999)Google Scholar
  12. 12.
    Murchland, J.: The effect of increasing or decreasing the length of a single arc on all shortest distances in a graph. Technical report, LBS-TNT-26. London Business School, Transport Network Theory Unit, London, UK (1967)Google Scholar
  13. 13.
    Peres, Y., Sotnikov, D., Sudakov, B., Zwick, U.: All-pairs shortest paths in O(n 2) time with high probability. In: Proc. of 51th FOCS, pp. 663–672 (2010)Google Scholar
  14. 14.
    Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths in undirected graphs. In: Proc. of 45th FOCS, pp. 499–508 (2004)Google Scholar
  15. 15.
    Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 580–591. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Thorup, M.: Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 384–396. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths. In: Proc. of 37th STOC, pp. 112–119 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wei Ding
    • 1
  • Guohui Lin
    • 2
  1. 1.Zhejiang University of Water Resources and Electric PowerHangzhouChina
  2. 2.Department of Computing ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations