Advertisement

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

  • Tamal Biswas
  • Kenneth W. Regan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)

Abstract

This paper proposes strategies for maintaining a database of computational results of functions f on sequence arguments x, where x is sorted in non-decreasing order and f(x) has greatest dependence on the first few terms of x. This scenario applies also to symmetric functions f, where the partial derivatives approach zero as the corresponding component value increases. The goal is to pre-compute exact values f(u) on a tight enough net of sequence arguments, so that given any other sequence x, a neighboring sequence u in the net giving a close approximation can be efficiently found. Our scheme avoids pre-computing the more-numerous partial-derivative values. It employs a new data structure that combines ideas of a trie and an array implementation of a heap, representing grid values compactly in the array, yet still allowing access by a single index lookup rather than pointer jumping. We demonstrate good size/approximation performance in a natural application.

Keywords

Data structures memoization sequences metrics topology machine learning cloud computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campbell-Kelly, M., Croarken, M., Flood, R., Robson, E.: The History of Mathematical Tables. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Muthukrishnan, S.: Data Streams: Algorithms and Applications. Now Publishers (2005)Google Scholar
  3. 3.
    Michie, D.: Memo functions and machine learning. Nature 218, 19–22Google Scholar
  4. 4.
    Liang, F.: Stochastic approximation Monte Carlo for MLP learning. In: Encyclopedia of Artificial Intelligence, pp. 1482–1489. Wiley (2009)Google Scholar
  5. 5.
    Regan, K., Haworth, G.McC.: Intrinsic chess ratings. In: Proceedings of AAAI 2011, San Francisco (2011) Google Scholar
  6. 6.
    Khoshnevisan, H., Afshar, M.: Space-efficient memo-functions. Journal of Systems and Software 35 (1996)Google Scholar
  7. 7.
    Khoshnevisan, H.: Efficient memo-table management strategies. Acta Informatica 28, 43–81Google Scholar
  8. 8.
    Alidina, M., Monteiro, J.C., Devadas, S., Ghosh, A., Papaefthymiou, M.C.: Precomputation-based sequential logic optimization for low power. IEEE Trans. VLSI Syst. 2(4), 426–436Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tamal Biswas
    • 1
  • Kenneth W. Regan
    • 1
  1. 1.Department of CSEUniversity at BuffaloAmherstUSA

Personalised recommendations