Advertisement

New Lower Bounds on Broadcast Function

  • Hayk Grigoryan
  • Hovhannes A. Harutyunyan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)

Abstract

This paper studies the broadcast function B(n). We consider the possible vertex degrees and possible connections between vertices of different degrees in graphs with \(b(G) = {\left\lceil\log_2 n\right\rceil}\). Using this, we present improved lower bounds on B(n) when n = 2 k  − 2 p and n = 2 k  − 2 p  + 1 (3 ≤ p < k). Also, we prove that B(24) ≥ 36 for graphs with maximum vertex degree at most 4.

Keywords

Broadcasting minimum broadcast graphs broadcast function lower bounds on broadcast function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bermond, J.C., Fraigniaud, P., Peters, J.G.: Antepenultimate broadcasting. Networks 26(3), 125–137 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bermond, J.C., Hell, P., Liestman, A.L., Peters, J.G.: Broadcasting in bounded degree graphs. SIAM Journal on Discrete Mathematics 5(1), 10–24 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bermond, J.C., Hell, P., Liestman, A.L., Peters, J.G.: Sparse broadcast graphs. Discrete Applied Mathematics 36(2), 97–130 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Changhong, L., Kemin, Z.: The broadcast function value B(23) is 33 or 34. Acta Mathematicae Applicatae Sinica (English Series) 16(3), 329–331 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Dinneen, M.J., Ventura, J.A., Wilson, M.C., Zakeri, G.: Compound constructions of broadcast networks. Discrete Applied Mathematics 93(2), 205–232 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Farley, A.M., Hedetniemi, S., Mitchell, S., Proskurowski, A.: Minimum broadcast graphs. Discrete Mathematics 25, 189–193 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gargano, L., Vaccaro, U.: On the construction of minimal broadcast networks. Networks 19(6), 673–689 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Harutyunyan, H.A.: An efficient vertex addition method for broadcast networks. Internet Mathematics 5(3), 211–225 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Harutyunyan, H.A., Liestman, A.L.: More broadcast graphs. Discrete Applied Mathematics 98(1-2), 81–102 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Harutyunyan, H.A., Liestman, A.L.: Improved upper and lower bounds for k-broadcasting. Networks 37(2), 94–101 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Harutyunyan, H.A., Liestman, A.L.: Upper bounds on the broadcast function using minimum dominating sets. Discrete Mathematics 312(20), 2992–2996 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and broadcasting in communication networks. Networks 18(4), 319–349 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Khachatrian, L.H., Harutounian, O.S.: Construction of new classes of minimal broadcast networks. In: Conference on Coding Theory, Dilijan, Armenia, pp. 69–77 (1990)Google Scholar
  14. 14.
    Konig, J.C., Lazard, E.: Minimum k-broadcast graphs. Discrete Applied Mathematics 53(1-3), 199–209 (1994)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Labahn, R.: A minimum broadcast graph on 63 vertices. Discrete Applied Mathematics 53(1-3), 247–250 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Maheo, M., Sacle, J.F.: Some minimum broadcast graphs. Discrete Applied Mathematics 53(1-3), 285 (1994)Google Scholar
  17. 17.
    Mitchell, S., Hedetniemi, S.: A census of minimum broadcast graphs. Journal of Combinatorics, Information and System Sciences 5, 141–151 (1980)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Sacle, J.F.: Lower bounds for the size in four families of minimum broadcast graphs. Discrete Mathematics 150(1), 359–369 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Xiao, J., Wang, X.: A research on minimum broadcast graphs. Chinese Journal of Computers 11, 99–105 (1988)Google Scholar
  20. 20.
    Zhou, J., Zhang, K.: A minimum broadcast graph on 26 vertices. Applied Mathematics Letters 14(8), 1023–1026 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hayk Grigoryan
    • 1
  • Hovhannes A. Harutyunyan
    • 1
  1. 1.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada

Personalised recommendations