Narrowing the Complexity Gap for Colouring (Cs,Pt)-Free Graphs

  • Shenwei Huang
  • Matthew Johnson
  • Daniël Paulusma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)


Let k be a positive integer. The k-Colouring problem is to decide whether a graph has a k-colouring. The k-Precolouring Extension problem is to decide whether a colouring of a subset of a graph’s vertex set can be extended to a k-colouring of the whole graph. A k-list assignment of a graph is an allocation of a list — a subset of {1,…,k} — to each vertex, and the List k -Colouring problem asks whether the graph has a k-colouring in which each vertex is coloured with a colour from its list. We prove a number of new complexity results for these three decision problems when restricted to graphs that do not contain a cycle on s vertices or a path on t vertices as induced subgraphs (for fixed positive integers s and t).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer Graduate Texts in Mathematics vol. 244 (2008)Google Scholar
  2. 2.
    Brandstädt, A., Klembt, T., Mahfud, S.: P 6- and triangle-free graphs revisited: structure and bounded clique-width. Discrete Mathematics & Theoretical Computer Science 8, 173–188 (2006)MathSciNetGoogle Scholar
  3. 3.
    Broersma, H.J., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three complexity results on coloring P k-free graphs. European Journal of Combinatorics 34, 609–619 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chudnovsky, M., Maceli, P., Stacho, J., Zhong, M.: Four-coloring graphs with no induced six-vertex path, and no C 5, personal communicationGoogle Scholar
  5. 5.
    Chudnovsky, M., Maceli, P., Zhong, M.: Three-coloring graphs with no induced six-edge path I: the triangle-free case (in preparation)Google Scholar
  6. 6.
    Chudnovsky, M., Maceli, P., Zhong, M.: Three-coloring graphs with no induced six-edge path II: using a triangle (in preparation)Google Scholar
  7. 7.
    Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), Congress. Numer., XXVI, Winnipeg, Man., Utilitas Math, pp. 125–157 (1980)Google Scholar
  8. 8.
    Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of colouring graphs with forbidden subgraphs (manuscript)Google Scholar
  9. 9.
    Golovach, P.A., Paulusma, D., Song, J.: Coloring graphs without short cycles and long induced paths. Discrete Applied Mathematics 167, 107–120 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Golovach, P.A., Paulusma, D., Song, J.: Closing complexity gaps for coloring problems on H-free graphs. Information and Computation (to appear)Google Scholar
  11. 11.
    Gravier, S., Hoàng, C.T., Maffray, F.: Coloring the hypergraph of maximal cliques of a graph with no long path. Discrete Mathematics 272, 285–290 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania Matematyki Applicationes Mathematicae XIX(3-4), 413–441 (1987)Google Scholar
  13. 13.
    Hell, P., Huang, S.: Complexity of coloring graphs without paths and cycles. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 538–549. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability of P 5-free graphs in p-time. Algorithmica 57, 74–81 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Huang, S.: Improved complexity results on k-coloring P t-free graphs. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 551–558. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics 126, 197–221 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kratochvíl, J.: Precoloring extension with fixed color bound. Acta Mathematica Universitatis Comenianae 62, 139–153 (1993)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Lovász, L.: Coverings and coloring of hypergraphs. In: Proc. 4th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Utilitas Math., pp. 3–12 (1973)Google Scholar
  19. 19.
    Mycielski, J.: Sur le coloriage des graphes. Colloq. Math. 3, 161–162 (1955)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Oum, S.-I.: Approximating rank-width and clique-width quickly. ACM Transactions on Algorithms 5 (2008)Google Scholar
  21. 21.
    Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a survey. Graphs Combin. 20, 1–40 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC 1978, pp. 216–226 (1978)Google Scholar
  23. 23.
    Tuza, Z.: Graph colorings with local restrictions - a survey. Discuss. Math. Graph Theory 17, 161–228 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Vizing, V.G.: Coloring the vertices of a graph in prescribed colors, in Diskret. Analiz., no. 29. Metody Diskret. Anal. v. Teorii Kodov i Shem 101, 3–10 (1976)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shenwei Huang
    • 1
  • Matthew Johnson
    • 2
  • Daniël Paulusma
    • 2
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.School of Engineering and Computing SciencesDurham University, Science LaboratoriesDurhamUnited Kingdom

Personalised recommendations