Advertisement

Approximation Algorithms for Packing Element-Disjoint Steiner Trees on Bounded Terminal Nodes

  • Daiki Hoshika
  • Eiji Miyano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)

Abstract

In this paper we discuss approximation algorithms for the Element-Disjoint Steiner Tree Packing problem (Element-STP for short). For a graph G = (V, E) and a subset of nodes T ⊆ V, called terminal nodes, a Steiner tree is a connected, acyclic subgraph that contains all the terminal nodes in T. The goal of Element-STP is to find as many element-disjoint Steiner trees as possible. Element-STP is known to be \({\cal APX}\)-hard even for |T| = 3 [1]. It is also known that Element-STP is \({\cal NP}\)-hard to approximate within a factor of Ω(log|V|) [3] and there is an O(log|V|)-approximation algorithm for Element-STP [2,4]. In this paper, we provide a \(\lceil \frac{|T|}{2}\rceil\)-approximation algorithm for Element-STP on graphs with |T| terminal nodes. Furthermore, we show that the approximation ratio of 3 for Element-STP on graphs with five terminal nodes can be improved to 2.

Keywords

Approximation Algorithm Bipartite Graph Approximation Ratio Terminal Node Steiner Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aazami, A., Cheriyan, J., Jampani, K.R.: Approximation algorithms and hardness results for packing element-disjoint Steiner trees in planar graphs. Algorithmica 63, 425–456 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Calinescu, G., Chekuri, C., Vondrak, J.: Disjoint bases in a polymatroid. Random Structures & Algorithms 35(4), 418–430 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cheriyan, J., Salavatipour, M.R.: Hardness and approximation results for packing Steiner trees. Algorithmica 45(1), 21–43 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cheriyan, J., Salavatipour, M.R.: Packing element-disjoint Steiner trees. ACM Trans. Algorithms 34(4), Article 47 (2007)Google Scholar
  5. 5.
    DeVos, M., McDonald, J., Pivotto, I.: Packing Steiner Trees. arXiv:1307.7621 (2013)Google Scholar
  6. 6.
    Frank, A., Király, T., Kriesell, M.: On decomposing a hypergraph into k connected sub-hypergraphs. Discrete Applied Math. 131(2), 373–383 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: polyhedral investigations. Mathematical Programming 72, 101–123 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: A cutting plane algorithm and computational results. Mathematical Programming 72, 125–145 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Grötschel, M., Martin, A., Weismantel, R.: The Steiner tree packing problem in VLSI design. Mathematical Programming 78, 265–281 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hind, H.R., Oellermann, O.: Menger-type results for three or more vertices. Congr. Number 113, 179–204 (1996)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Jain, K., Mhdian, M., Salavatipour, M.R.: Packing Steiner trees. In: Proc. ACM-SIAM SODA, pp. 266–274 (2003)Google Scholar
  12. 12.
    Jain, K., Măndoiu, I.I., Vazirani, V.V., Williamson, D.P.: A Primal-Dual Schemes Based Approximation Algorithm for the Element Connectivity Problem. In: Proc. ACM-SIAM SODA, pp. 484–489 (1999)Google Scholar
  13. 13.
    Kaski, P.: Packing Steiner trees with identical terminal sets. Information Processing Letters 91(1), 1–5 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kriesell, M.: Edge-disjoint trees containing some given vertices in a graph. J. Combinatorial Theory, Series B 88, 53–65 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kriesell, M.: Packing Steiner trees on four terminals. J. Combinatorial Theory, Series B 100, 546–553 (2010)Google Scholar
  16. 16.
    Lau, L.C.: On approximate min-max theorems for graph connectivity problems. PhD thesis, University of Toronto (2006)Google Scholar
  17. 17.
    Lau, L.C.: An approximate max-Steiner-tree-packing min-Steiner-cut theorem. Combinatorica 27, 71–90 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Nash-Williams, S.J.A.: Edge disjoint spanning trees of finite graphs. J. London Math. Soc. 36, 445–450 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J. London Math. Soc. 36, 221–230 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    West, D.B., Wu, H.: Packing of Steiner trees and S-connectors in graphs. J. Combinatorial Theory, Series B 102, 186–205 (2012)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daiki Hoshika
    • 1
  • Eiji Miyano
    • 1
  1. 1.Department of Systems Design and InformaticsKyushu Institute of TechnologyIizukaJapan

Personalised recommendations