Advertisement

Local Event Boundary Detection with Unreliable Sensors: Analysis of the Majority Vote Scheme

  • Peter Brass
  • Hyeon-Suk Na
  • Chan-Su Shin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8546)

Abstract

In this paper we study the identification of an event region X within a larger region Y, in which the sensors are distributed by a Poisson process of density λ to detect this event region, i.e., its boundary. The model of sensor is a 0-1 sensor that decides whether it lies in X or not, and which might be incorrect with probability p. It also collects information on the 0-1 values of the neighbors within some distance r and revises its decision by the majority vote of these neighbors. In the most general setting, we analyze this simple majority vote scheme and derive some upper and lower bounds on the expected number of misclassified sensors. These bounds depend on several sensing parameters of p, r, and some geometric parameters of the event region X. By making some assumptions on the shape of X, we prove a significantly improved upper bound on the expected number of misclassified sensors; especially for convex regions with sufficiently round boundary.

Keywords

Majority Vote Curve Segment Simple Majority Rule Neighboring Sensor Curvature Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agur, Z., Frankel, A.S., Klein, S.T.: The Number of Fixed Points of the Majority Rule. Discrete Mathematics 70, 295–302 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alkoot, F., Kittler, J.: Experimental Evaluation of Expert Fusion Strategies. Pattern Recognition Letters 20, 1361–1369 (1999)CrossRefGoogle Scholar
  3. 3.
    Blaschke, W.: Kreis und Kugel. Zweite Auflage, Walter de Gruyter AG, Berlin (1956)Google Scholar
  4. 4.
    Brass, P., Na, H.-S., Shin, C.-S.: Local Event Boundary Detection with Unreliable Sensors: Analysis of the Majority Vote Scheme. CoRR abs/1311.3149 (2013)Google Scholar
  5. 5.
    Chen, D., Cheng, X.: An Asymptotic Analysis of Some Expert Fusion Methods. Pattern Recognition Letters 22, 901–904 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chintalapudi, K.K., Govindan, R.: Localized Edge Detection in Sensor Fields. Ad Hoc Networks 1, 273–291 (2003)CrossRefGoogle Scholar
  7. 7.
    Ding, M., Cheng, X.: Robust Event Boundary Detection in Sensor Networks–A Mixture Model Approach. In: Proc. IEEE INFOCOM 2009, pp. 2991–2995 (2009)Google Scholar
  8. 8.
    Hagerup, T., Rüb, C.: A Guided Tour of Chernoff Bounds. Information Processing Letters 33(6), 305–308 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Jin, G., Nittel, S.: NED: An Efficient Noise-Tolerant Event and Event Boundary Detection Algorithm in Wireless Sensor Networks. In: Proc. 7th Int. IEEE Conference on Mobile Data Management, vol. 153 (2006)Google Scholar
  10. 10.
    Kittler, J., Hatef, M., Duin, R., Matas, J.: On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)CrossRefGoogle Scholar
  11. 11.
    Královič, R.: On Majority Voting Games in Trees. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001. LNCS, vol. 2234, pp. 282–291. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Krishnamachari, B., Iyengar, S.: Distributed Bayesian Algorithms for Fault-Tolerant Event Region Detection in Wireless Sensor Networks. IEEE Transactions on Computers 53(3), 241–250 (2004)CrossRefGoogle Scholar
  13. 13.
    Kuncheva, L.I.: A Theoretical Analysis of Six Classifier Fusion Strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 281–286 (2002)CrossRefGoogle Scholar
  14. 14.
    Lam, L., Suen, C.Y.: Application of Majority Voting to Pattern Recognition: An Analysis of its Behavior and Performance. IEEE Transactions on Systems, Man, and Cybernetics 27, 553–568 (1997)CrossRefGoogle Scholar
  15. 15.
    Matousek, J., Vondrak, J.: Lecture Notes: The Probabilistic Method, pp. 1–71 (2008)Google Scholar
  16. 16.
    Mustafa, N.A., Pekeč, A.: Majority Consensus and the Local Majority Rule. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 530–542. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Mustafa, N.A., Pekeč, A.: Listen to your Neighbors: How (not) to Reach a Consensus. SIAM Journal of Discrete Mathematics 17, 634–660 (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Narasimhamurthy, M.: A Framework for the Analysis of Majority Voting. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 268–274. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Nowak, R.D., Mitra, U.: Boundary Estimation in Sensor Networks: Theory and Methods. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 80–95. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Peleg, D.: Local Majorities, Coalitions and Monopolies in Graphs: A Review. Theoretical Computer Science 282, 231–257 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Wang, Y., Gao, J., Mitchell, J.S.B.: Boundary Recognition in Sensor Networks by Topological Methods. In: Proc. 12th International Conference on Mobile Computing and Networking, pp. 122–133 (2006)Google Scholar
  22. 22.
    Wu, W., Cheng, X., Ding, M., Xing, K., Liu, F., Deng, P.: Localized Outlying and Boundary Data Detection in Sensor Networks. IEEE Transactions on Knowledge and Data Engineering 19(8), 1145–1157 (2007)CrossRefGoogle Scholar
  23. 23.
    Zollman, K.J.S.: Social Structure and the Effects of Conformity. Synthese 172, 317–340 (2010)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peter Brass
    • 1
  • Hyeon-Suk Na
    • 2
  • Chan-Su Shin
    • 3
  1. 1.Dept. of Computer ScienceCity CollegeNew YorkUSA
  2. 2.School of ComputingSoongsil UniversitySeoulKorea
  3. 3.Dept. of Digital Information EngineeringHankuk University of Foreign StudiesYonginKorea

Personalised recommendations