On the Implementation of Quantitative Model Refinement

  • Bogdan Iancu
  • Diana-Elena Gratie
  • Sepinoud Azimi
  • Ion Petre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8542)


The iterative process of adding details to a model while preserving its numerical behavior is called quantitative model refinement, and it has been previously discussed for ODE-based models and for kappa-based models. In this paper, we investigate and compare this approach in three different modeling frameworks: rule-based modeling, Petri nets and guarded command languages. As case study we use a model for the eukaryotic heat shock response that we refine to include the acetylation of the heat shock factor. We discuss how to perform the refinement in each of these frameworks in order to avoid the combinatorial state explosion of the refined model. We conclude that Bionetgen (and rule-based modeling in general) is well-suited for a compact representation of the refined model, Petri nets offer a good solution through the use of colors, while the PRISM refined model may be much larger than the basic model.


Quantitative model refinement heat shock response acetylation rule-based modeling Petri nets model checking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Back, R., Ishdorj, T., Petre, I.: A petri net formalization of heat shock response model. In: Petre, I., Rozenberg, G. (eds.) Workshop on Natural Computing and Graph Transformations, pp. 19–28 (2008)Google Scholar
  2. 2.
    Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph theory for of biochemical networks. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNB, vol. 4230, pp. 89–106. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Czeizler, E., Rogojin, V., Petre, I.: The phosphorylation of the heat shock factor as a modulator for the heat shock response. In: Proceedings of the 9th International Conference on Computational Methods in Systems Biology, pp. 9–23. ACM (2011)Google Scholar
  4. 4.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling and model perturbation. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp. 116–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Faeder, J., Blinov, M., Goldstein, B., Hlavacek, W.: Rule-based modeling of biochemical networks. Complexity 10(4), 22–41 (2005)CrossRefGoogle Scholar
  6. 6.
    Gratie, D., Iancu, B., Azimi, S., Petre, I.: Quantitative model refinement in four different frameworks, with applications to the heat shock response. Tech. Rep. 1067, TUCS (2013)Google Scholar
  7. 7.
    Harmer, R.: Rule-based modelling and tunable resolution. EPTCS 9, 65–72 (2009)Google Scholar
  8. 8.
    Heath, J.K., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006. LNB, vol. 4210, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: Prism: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Iancu, B., Czeizler, E., Czeizler, E., Petre, I.: Quantitative refinement of reaction models. IJUC 8(5-6), 529–550 (2012)Google Scholar
  11. 11.
    Iancu, B., Gratie, D., Azimi, S., Petre, I.: Computational modeling of the eukaryotic heat shock response: The bionetgen implementation, the petri net implementation and the prism implementation (2013),
  12. 12.
    Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)CrossRefGoogle Scholar
  13. 13.
    Kline, M., Morimoto, R.: Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Molecular and cellular biology 17(4), 2107–2115 (1997)Google Scholar
  14. 14.
    Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems biology in practice: Concepts, implementation and application. Wiley-Vch (2005)Google Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the probabilistic model checker prism. Electronic Notes in Theoretical Computer Science 153(2), 5–31 (2006)CrossRefGoogle Scholar
  16. 16.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Liu, F., Heiner, M., Yang, M.: An efficient method for unfolding colored petri nets. In: Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., Uhrmacher, A. (eds.) Proceedings of the Winter Simulation Conference, vol. 295. Winter Simulation Conference (2012)Google Scholar
  18. 18.
    Mizera, A., Czeizler, E., Petre, I.: Self-assembly models of variable resolution. In: Priami, C., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIV. LNCS, vol. 7625, pp. 181–203. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Murphy, E., Danos, V., Feret, J., Krivine, J., Harmer, R.: Rule Based Modelling and Model Refinement. In: Elements of Computational Systems Biology, pp. 83–114. Wiley Book Series on Bioinformatics, John Wiley & Sons, Inc. (2010)Google Scholar
  20. 20.
    Petre, I., Mizera, A., Hyder, C., Meinander, A., Mikhailov, A., Morimoto, R., Sistonen, L., Eriksson, J., Back, R.: A simple mass-action model for the eukaryotic heat shock response and its mathematical validation. Natural Computing 10(1), 595–612 (2011)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Raman, K., Chandra, N.: Systems biology. Resonance 15(2), 131–153 (2010)Google Scholar
  22. 22.
    Rieger, T., Morimoto, R., Hatzimanikatis, V.: Mathematical modeling of the eukaryotic heat-shock response: Dynamics of the hsp70 promoter. Biophysical Journal 88(3), 1646–1658 (2005)CrossRefGoogle Scholar
  23. 23.
    Shi, Y., Mosser, D., Morimoto, R.: Molecular chaperones as hsf1-specific transcriptional repressors. Genes & Development 12(5), 654–666 (1998)CrossRefGoogle Scholar
  24. 24.
    Westerheide, S., Anckar, J., Stevens Jr., S., Sistonen, L., Morimoto, R.: Stress-inducible regulation of heat shock factor 1 by the deacetylase sirt1. Science Signalling 323(5917), 1063–1066 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bogdan Iancu
    • 1
    • 2
    • 3
  • Diana-Elena Gratie
    • 1
    • 2
    • 3
  • Sepinoud Azimi
    • 1
    • 2
    • 3
  • Ion Petre
    • 1
    • 2
    • 3
  1. 1.Computational Biomodeling LaboratoryFinland
  2. 2.Turku Centre for Computer ScienceFinland
  3. 3.Department of ITÅbo Akademi UniversityÅboFinland

Personalised recommendations