Skip to main content

Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints from Raw NGS Reads

  • Conference paper
Algorithms for Computational Biology (AlCoB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8542))

Included in the following conference series:

Abstract

We propose a formal model and an algorithm for detecting inversion breakpoints without a reference genome, directly from raw NGS data. This model is characterized by a fixed size topological pattern in the de Bruijn Graph. We describe precisely the possible sources of false positives and false negatives and we additionally propose a sequence-based filter giving a good trade-off between precision and recall of the method. We implemented these ideas in a prototype called TakeABreak. Applied on simulated inversions in genomes of various complexity (from E. coli to a human chromosome dataset), TakeABreak provided promising results with a low memory footprint and a small computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alkan, C., Coe, B.P., Eichler, E.E.: Genome structural variation discovery and genotyping. Nat Rev. Genet. 12, 363–376 (2011)

    Article  Google Scholar 

  2. Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based on a bloom filter. Algorithms for Molecular Biology 8, 22 (2013)

    Article  Google Scholar 

  3. Drezen, E., et al.: The Genome Assembly and Analysis Tool Box, http://gatb.inria.fr/ (Manuscript in Prep. 2014)

  4. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and genotyping of variants using colored de bruijn graphs. Nature Genetics 44, 226–232 (2012)

    Article  Google Scholar 

  5. Lemaitre, C., et al.: MindTheGap Software, http://mindthegap.genouest.org/ (Manuscript in Prep. 2014)

  6. Li, Y., Zheng, H., Luo, R., Wu, H., Zhu, H., Li, R., et al.: Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nat. Biotechnol. 29, 723–730 (2011)

    Article  Google Scholar 

  7. Medvedev, P., Stanciu, M., Brudno, M.: Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 6, S13–S20 (2009)

    Google Scholar 

  8. Mills, R.E., Walter, K., Stewart, C., Handsaker, R.E.: 1000 Genomes Project: Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011)

    Article  Google Scholar 

  9. Nordström, K.J.V., Albani, M.C., James, G.V., et al.: Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nature Biotechnology 31, 325–330 (2013)

    Article  Google Scholar 

  10. Peterlongo, P., Schnel, N., Pisanti, N., Sagot, M.-F., Lacroix, V.: Identifying sNPs without a reference genome by comparing raw reads. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 147–158. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Sacomoto, G.A., Kielbassa, J., Chikhi, R., Uricaru, R., et al.: Kissplice: de-novo calling alternative splicing events from rna-seq data. BMC Bioinformatics 13, S5 (2012)

    Google Scholar 

  12. Salikhov, K., Sacomoto, G., Kucherov, G.: Using Cascading Bloom Filters to Improve the Memory Usage for de Brujin Graphs. In: Darling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 364–376. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Uricaru, R., et al.: discoSnp Software, http://colibread.inria.fr/discosnp/ (Manuscript in Prep. 2014)

  14. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome Research 18, 821–829 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lemaitre, C., Ciortuz, L., Peterlongo, P. (2014). Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints from Raw NGS Reads. In: Dediu, AH., Martín-Vide, C., Truthe, B. (eds) Algorithms for Computational Biology. AlCoB 2014. Lecture Notes in Computer Science(), vol 8542. Springer, Cham. https://doi.org/10.1007/978-3-319-07953-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07953-0_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07952-3

  • Online ISBN: 978-3-319-07953-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics