Skip to main content

Green Composite Manufacturing via Compression Molding and Thermoforming

  • Chapter
Manufacturing of Natural Fibre Reinforced Polymer Composites

Abstract

Increasing concern over material usage and its impact on the environmental have escalated the growth of green composite materials. There are tremendous opportunities where conventional mineral and synthetic-based materials can be replaced with green composite materials. Before green composites can be used to manufacture various products, it is important to understand their processing steps and optimize process parameters. Past researches on green composites were focused mostly on characterization, and less research can be found in manufacturing of green composites. Common technologies include but are not limited to injection molding, extrusion, thermoforming, and compression molding. In this chapter, manufacturing process of green composites via compression molding and thermoforming is developed based on patents and literature review. Main emphasis is given toward key processing steps, such as material selection, preprocessing, semifinished product manufacturing, and green composite fabrication. Moreover, processing data of some commercially available green composites and biopolymers is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altun Y, Dogan M, Bayramli E (2013) Effect of alkaline treatment and pre-impregnation on mechanical and water absorbtion properties of pine wood flour containing poly (lactic acid) based green-composites. J Polym Environ 21:850–856

    Article  CAS  Google Scholar 

  • Ayrilmis N, Jarusombuti S (2010) Flat-pressed wood plastic composite as an alternative to conventional wood-based panels. J Compos Mater 45:103–112

    Article  Google Scholar 

  • Ben G, Kihara Y (2007) Development and evaluation of mechanical properties for kenaf fibers/PLA composites. Key Eng Mater 334–335:489–492

    Article  Google Scholar 

  • Benthien JT, Thoemen H (2012) Effects of raw materials and process parameters on the physical and mechanical properties of flat pressed WPC panels. Compos Part A Appl Sci Manuf 43:570–576

    Article  CAS  Google Scholar 

  • Billington S, Criddle C, Frank C, Morse M, Christian S, Pieja A (2011) US Patent no. US20080160567 A1. Washington: U.S. Patent and Trademark Office

    Google Scholar 

  • Chang PR, Zhou Z, Xu P, Chen Y, Zhou S, Huang J (2009) Thermoforming starch-graft-polycaprolactone biocomposites via one-pot microwave assisted ring opening polymerization. J Appl Polym Sci 113:2973–2979

    Article  CAS  Google Scholar 

  • Cheng B (2009) The effect of fibre orientation and dispersion on the mechanical properties of natural fibre reinforced polypropylene (Masters thesis). ProQuest dissertations and Theses, p 116

    Google Scholar 

  • Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798

    Article  CAS  Google Scholar 

  • Drzal L, Mehta G, Misra M, Mohanty A, Thayer K (2007) US Patent no. US7208221 B2. Washington: U.S. Patent and Trademark Office

    Google Scholar 

  • Drzal L, Mohanty A, Liu W, Thayer K, Misra M (2009) Cellulosic biomass soy flour based biocomposites and process for manufacturing thereof. US Patent no. US20060043629 A1. Washington: U.S. Patent and Trademark Office

    Google Scholar 

  • Du Y, Zhang J, Toghiani H, Lacy TE, Xue Y, Horstemeyer MF, Pittman CU (2010) Kenaf bast fiber bundle-reinforced unsaturated polyester composites. I: processing techniques for high kenaf fiber loading. For Prod J 60:289–295

    CAS  Google Scholar 

  • Erchiqui F, Godard F, Gakwaya A, Koubaa A, Vincent M, Kaddami H (2009) Engineering investigations on the potentiality of the thermoformability of HDPE charged by wood flours in the thermoforming part. Polym Eng Sci 49:1594–1602

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  • Frenz V, Scherzer D, Ag B, Germany L, Villalobos M, Awojulu AA, Edison M, Corporation B, Van Der Meer R, Nederland B (2008) Multifunctional polymers as chain extenders and compatibilizers for polycondensates and biopolymers. Chain extension vs. solid state polymerization. Paper presented at the 66th annual technical conference of the society of plastics engineers, Milwaukee

    Google Scholar 

  • Frone AN, Berlioz S, Chailan J, Panaitescu DM, Donescu D (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32:976–985

    Article  CAS  Google Scholar 

  • FuturaMat© Website: our plastics (n.d) Retrieved from http://www.futuramat.com/english/our-products/

  • Gällstedt M, Mattozzi A, Johansson E, Hedenqvist MS (2004) Transport and tensile properties of compression-molded wheat gluten films. Biomacromolecules 5:2020–2028

    Article  PubMed  Google Scholar 

  • Gardiner G (2006) Thermoformable Composite Panels, Part 1: CompositesWorld. In: Composites technology. Retrieved from http://www.compositesworld.com/articles/thermoformable-composite-panels-part-1

  • Gejo G, Kuruvilla J, Boudenne A, Sabu T (2010) Recent advances in green composites. Key Eng Mater 425:107–166

    Article  Google Scholar 

  • Hu R-H, Ma Z-G, Zheng S, Li Y-N, Yang G-H, Kim H-K, Lim J-K (2012) A fabrication process of high volume fraction of jute fiber/polylactide composites for truck liner. Int J Precis Eng Manuf 13:1243–1246

    Article  Google Scholar 

  • Immonen K, Sivonen E, Valta K, Hulkko J, Alto S, Pitkanen P, Salorinne K (2013) US Patent no. US20130331518 A1. Washington: U.S. Patent and Trademark Office

    Google Scholar 

  • Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233

    Article  CAS  Google Scholar 

  • Khondker OA, Ishiaku US, Nakai A, Hamada H (2006) A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos Part A Appl Sci Manuf 37:2274–2284

    Article  Google Scholar 

  • Kim H-J, Lee B-H, Kim HS (2010a) US Patent no. US20100170649 A1. Washington: U.S. Patent and Trademark Office

    Google Scholar 

  • Kim S, Xu J, Liu S (2010b) Production of biopolymer composites by particle bonding. Compos Part A Appl Sci Manuf 41:146–153

    Article  Google Scholar 

  • Klein P (2009) Fundamentals of plastics thermoforming. Morgan and Claypool Publishers, California, USA, pp. 1–97

    Google Scholar 

  • La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A Appl Sci Manuf 42:579–588

    Article  Google Scholar 

  • Li H, Huneault MA (2011) Effect of chain extension on the properties of PLA/TPS blends. J Appl Polym Sci 122:134–141

    Article  CAS  Google Scholar 

  • Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  • Ma H, Joo CW (2010) Structure and mechanical properties of jute—polylactic acid biodegradable composites. J Compos Mater 45:1451–1460

    Google Scholar 

  • Menzel C, Olsson E, Plivelic TS, Andersson R, Johansson C, Kuktaite R, Järnström L, Koch K (2013) Molecular structure of citric acid cross-linked starch films. Carbohydr Polym 96:270–276

    Article  CAS  PubMed  Google Scholar 

  • Nechwatal A, Reubmann T, Bohm S, Richer E (2005) The dependence between the process technologies and the effect of MAH-PP adhesives in natural fiber reinforced thermoplastic composites. Adv Eng Mater 7:68–73

    Google Scholar 

  • Nilsson H, Galland S, Larsson PT, Gamstedt EK, Iversen T (2012) Compression molded wood pulp biocomposites: a study of hemicellulose influence on cellulose supramolecular structure and material properties. Cellulose 19:751–760

    Article  CAS  Google Scholar 

  • Okamoto K, Ichikawa T, Yokohara T, Yamaguchi M (2009) Miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends. Eur Polym J 45:2304–2312

    Article  CAS  Google Scholar 

  • Onal L, Adanur S (2005) Optimization of compression molding process in laminated woven composites. J Reinf Plast Compos 24:775–780

    Article  CAS  Google Scholar 

  • POLYFEA – a strong partner in compostable plastics (2009) In: BIOPRO Baden-württemb. GmbH. Retrieved from http://www.bio-pro.de/biopolymere/artikelliste_biopolymere/index.html?lang=en&artikelid=/artikel/04261/index.html

  • Reddy N, Yang Y (2011) Biocomposites developed using water-plasticized wheat gluten as matrix and jute fibers as reinforcement. Polym Int 60:711–716

    Article  CAS  Google Scholar 

  • Sain M, Pervaiz M (2008) Mechanical properties of wood-polymers composites. Wood-polymer composites. Woodhead Publishing, Cambridge, pp 101–116

    Google Scholar 

  • Sawpan MA, Pickering KL, Fernyhough A (2011) Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos Part A Appl Sci Manuf 42:310–319

    Article  Google Scholar 

  • Takagi H (2011) Strength properties of cellulose nanofiber green composites. Key Eng Mater 462–463:576–581

    Article  Google Scholar 

  • Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos Part A Appl Sci Manuf 39:685–689

    Article  Google Scholar 

  • Takemura K (2010) Molding conditions and mechanical properties of jute fiber reinforced composite. Key Eng Mater 452–453:261–264

    Article  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2011a) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    Article  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2011b) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    Article  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18:64–72

    Article  CAS  Google Scholar 

  • Wang B (2011) Dispersion of cellulose nanofibers in biopolymer based dispersion of cellulose nanofibers in biopolymer based nanocomposites. Doctoral dissertation, T-Space research repository, University of Toronto

    Google Scholar 

  • Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4:5079–5085

    Article  CAS  PubMed  Google Scholar 

  • Warnes JM, Fernyhough A, Anderson CR, Lee BJ, Ralph M, Witt J (2009) Method for producing wood fiber composite products. US Patent no. US8012389 B2. Washington: U.S. Patent and Trademark Office

    Google Scholar 

  • Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT, Mohanty AK, Misra M (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A Appl Sci Manuf 38:1569–1580

    Article  Google Scholar 

  • Zehner BE (2005) Cellulosic/polymer composite material. US Patent no. US6971211 B1. Washington: U.S. Patent and Trademark Office

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birat KC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

KC, B., Pervaiz, M., Faruk, O., Tjong, J., Sain, M. (2015). Green Composite Manufacturing via Compression Molding and Thermoforming. In: Salit, M., Jawaid, M., Yusoff, N., Hoque, M. (eds) Manufacturing of Natural Fibre Reinforced Polymer Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-07944-8_3

Download citation

Publish with us

Policies and ethics