Advertisement

Manufacturing of Natural Fibre-Reinforced Polymer Composites by Solvent Casting Method

  • I. KongEmail author
  • K. Y. Tshai
  • M. Enamul Hoque

Abstract

Globally increasing environmental concern of petroleum-based material leads to finding the alternative renewable natural sources. Natural fibre-based composite is gaining immense interest not only because of its positive environmental impact but also its economic advantages. One of the very first and simplest processing techniques that have been used for preparing natural fibre-reinforced polymer composites is solvent casting method. In practice, the major advantage of solvent casting is its ease of fabrication without the need of specialized equipment. There are several factors that may influence solvent casting method and hence, the performance of the overall polymer composites. The present chapter provides a comprehensive overview on the manufacturing of natural fibre-reinforced polymer composites by solvent casting method. It comprises information on the factors that influence the method and the properties of the natural fibre-reinforced polymer composites prepared by this method as well as the possible applications.

Keywords

Solvent casting Natural fibre Mechanical properties Thermal properties 

Abbreviations

DMA

Dynamic mechanical analysis

DMF

N, N-dimethylformamide

DSC

Differential scanning calorimetry

HDS

Hexadecyltrimethoxy-silanes

MEK

Methyl ethyl ketone

MIBK

Methyl isobutyl ketone

MPS

γ-Methacryloxypropyltrimethoxy

MRPS

γ-Mercaptoproyltrimethoxy

PCL

Poly(ε-caprolactone)

PEG

Polyethylene glycol

PHBV

Polyhydroxybutyrate-co-valerate

PLA

Poly(lactic acid)

PMMA

Poly(methyl methacrylate)

Poly(S-co-BuA)

Poly(styrene-co-butyl acrylate)

PVA

Poly(vinyl alcohol)

PVAc

Polyvinyl acetate

SEM

Scanning electron microscope

Tg

Glass-transition temperature

THF

Tetrahydrofuran

TMA

Thermomechanical analysis

WPU

Waterborne polyurethane

References

  1. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639. doi: 10.1016/j.compscitech.2006.07.003
  2. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626. doi: 10.1021/bm0493685 CrossRefPubMedGoogle Scholar
  3. Cooper WJ, Krasicky PD, Rodriguez F (1986) Dissolution rates of poly(methyl methacrylate) films in mixed solvents. J Appl Polym Sci 31(1):65–73. doi: 10.1002/app.1986.070310107 CrossRefGoogle Scholar
  4. Dufresne A, Cavaillé J-Y, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18(2):198–210. doi: 10.1002/pc.10274 CrossRefGoogle Scholar
  5. Edwards RL, Coles G, Sharpe WN Jr (2004) Comparison of tensile and bulge tests for thin-film silicon nitride. Exp Mech 44(1):49–54. doi: 10.1007/BF02427976 CrossRefGoogle Scholar
  6. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003
  7. Gallo E, Schartel B, Acierno D, Cimino F, Russo P (2013) Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate. Compos Part B Eng 44(1):112–119. doi: 10.1016/j.compositesb.2012.07.005
  8. Gregory ER, Cheryl AM, Surya KM (2001) Processing of polymer scaffold: solvent casting. In: Anthony A, Robert PL (eds) Methods of tissue engineering. Academic Press, California, pp 681–686Google Scholar
  9. Grulke EA (1999) Solubility parameter values. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley-Interscience, New YorkGoogle Scholar
  10. Habib M, Guessasma S, Bassir D, Benseddiq N (2011) Interfacial damage in biopolymer composites reinforced using hemp fibres: finite element simulation and experimental investigation. Compos Sci Technol 71(11):1419–1426. doi: 10.1016/j.compscitech.2011.05.015
  11. Hansen EF, Derrick MR, Schilling MR, Garcia R (1991) The effects of solution application on some mechanical and physical properties of thermoplastic amorphous polymers used in conservation: poly(vinyl acetate)s. J Am Inst Conserv 30(2):203–213. doi: 10.1179/019713691806066764 CrossRefGoogle Scholar
  12. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86. doi: 10.1007/s11837-006-0234-2 CrossRefGoogle Scholar
  13. Holmberg K, Jönsson B, Kronberg B, Lindman B (2003) Introduction to surfactants. In: Holmberg K, Jönsson B, Kronberg B, Lindman B (eds) Surfactants and polymers in aqueous solution, 2nd edn. Wiley, West SussexGoogle Scholar
  14. Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42(24):2629–2645. doi: 10.1177/0021998308096327 CrossRefGoogle Scholar
  15. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B Eng 43(7):2883–2892. doi: 10.1016/j.compositesb.2012.04.053
  16. Katoh K, Shibayama M, Tanabe T, Yamauchi K (2004) Preparation and physicochemical properties of compression-molded keratin films. Biomaterials 25(12):2265–2272. doi: 10.1016/j.biomaterials.2003.09.021
  17. Khwaldia K, Perez C, Banon S, Desobry S, Hardy J (2004) Milk proteins for edible films and coatings. Crit Rev Food Sci Nutr 44(4):239–251. doi: 10.1080/10408690490464906 CrossRefPubMedGoogle Scholar
  18. Le Duigou A, Baley C, Grohens Y, Davies P, Cognard J-Y, Créach’cadec R, Sohier L (2014) A multi-scale study of the interface between natural fibres and a biopolymer. Compos Part A Appl Sci Manuf 65(0):161–168. doi: 10.1016/j.compositesa.2014.06.010
  19. Lee S-Y, Mohan DJ, Kang I-A, Doh G-H, Lee S, Han S (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10(1):77–82. doi: 10.1007/s12221-009-0077-x CrossRefGoogle Scholar
  20. Li Y, Mai Y-W, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60(11):2037–2055. doi: 10.1016/S0266-3538(00)00101-9
  21. Lieder R, Darai M, Orlygsson G, Sigurjonsson O (2013) Solution casting of chitosan membranes for in vitro evaluation of bioactivity. Biol Proc Online 15(1):11. doi: 10.1186/1480-9222-15-11
  22. Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ (2010) Characterisation of solution cast cellulose nanofibre – reinforced poly(lactic acid). Express Polym Lett 4(1):26–31. doi: 10.3144/expresspolymlett.2010.5
  23. Ly B, Thielemans W, Dufresne A, Chaussy D, Belgacem MN (2008) Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Compos Sci Technol 68(15–16):3193–3201. doi: 10.1016/j.compscitech.2008.07.018
  24. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397. doi: 10.3390/polym3031377 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Manjkow J, Papanu JS, Hess DW, Soane DS, Bell AT (1987) Influence of processing and molecular parameters on the dissolution rate of poly‐(methyl methacrylate) thin films. J Electrochem Soc 134(8):2003–2007. doi: 10.1149/1.2100807 CrossRefGoogle Scholar
  26. Mathew AP, Oksman K (2010) Cellulose nanofiber based composites for use as ligament or tendon substitute. In: International conference on nanotechnology for the forest products industry 2010, Otaniemi, Espoo, Finland, 2010. TAPPI Press, Norcross, pp 980–982Google Scholar
  27. Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101(1):300–310. doi: 10.1002/app.23346 CrossRefGoogle Scholar
  28. Messiry ME (2013) Theoretical analysis of natural fiber volume fraction of reinforced composites. Alexandria Eng J 52(3):301–306. doi: 10.1016/j.aej.2013.01.006
  29. Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28(8):1223–1270. doi: 10.1016/S0079-6700(03)00045-5
  30. Mustapa IR, Shanks RA, Kong I (2013a) Melting behaviour and dynamic mechanical properties of poly(lactic acid) hemp nanosilica composites. Asian Trans Basic Appl Sci 3(2):29–37. doi:ATBAS-30320028Google Scholar
  31. Mustapa IR, Shanks RA, Kong I (2013b) Poly(lactic acid)-hemp-nanosilica hybrid composites: thermomechanical, thermal behavior and morphological properties. Int J Adv Sci Eng Technol 3(1):192–199Google Scholar
  32. Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin–microcrystalline cellulose composite films. J Appl Polym Sci 86(13):3425–3429. doi: 10.1002/app.11370 CrossRefGoogle Scholar
  33. Ouano AC, Carothers JA (1980) Dissolution dynamics of some polymers: solvent-polymer boundaries. Polym Eng Sci 20(2):160–166. doi: 10.1002/pen.760200208 CrossRefGoogle Scholar
  34. Pang C, Shanks RA, Ing K, Daver F (2013) Plasticised cellulose acetate-natural fibre composite. World J Eng 10(5):405–409. doi: 10.1260/1708-5284.10.5.405
  35. Papanu JS, Hess DW, Soane DS, Bell AT (1990) Swelling of poly(methyl methacrylate) thin films in low molecular weight alcohols. J Appl Polym Sci 39(4):803–823. doi: 10.1002/app.1990.070390404 CrossRefGoogle Scholar
  36. Phisalaphong M, Suwanmajo T, Sangtherapitikul P (2008) Novel nanoporous membranes from regenerated bacterial cellulose. J Appl Polym Sci 107(1):292–299. doi: 10.1002/app.27118 CrossRefGoogle Scholar
  37. Riedel U, Nickel J (2005) Applications of natural fiber composites for constructive parts in aerospace, automobiles, and other areas. In: Biopolymers online. Wiley-VCH Verlag GmbH & Co. KGaA. doi: 10.1002/3527600035.bpola001
  38. Rippon JA, Evans DJ (2012) Improving the properties of natural fibres by chemical treatments. In: Kozlowski R (ed) Handbook of natural fibres: processing and applications, vol 2. Woodhead Publishing, Cambridge, UK, pp 63–140CrossRefGoogle Scholar
  39. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498. doi: 10.1016/j.eurpolymj.2008.05.024
  40. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363. doi: 10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x CrossRefGoogle Scholar
  41. Salehifar M, Beladi Nejad MH, Alizadeh R, Azizi MH (2013) Effect of LDPE/MWCNT films on the shelf life of Iranian Lavash bread. Pelagia Res Libr 3(6):183–18Google Scholar
  42. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71(2):235–244. doi: 10.1016/j.carbpol.2007.05.041
  43. Shibata S, Cao Y, Fukumoto I (2005) Press forming of short natural fiber-reinforced biodegradable resin: effects of fiber volume and length on flexural properties. Polym Test 24(8):1005–1011. doi: 10.1016/j.polymertesting.2005.07.012
  44. Singh B, Gupta M, Tarannum H, Randhawa A (2011) Natural fiber-based composite building materials. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, Heidelberg, pp 701–720. doi: 10.1007/978-3-642-17370-7_24
  45. Summerscales J, Grove S (2014) Manufacturing methods for natural fibre composites. In: Hodzic A, Shanks R (eds) Natural fibre composites: materials, processes and applications. Woodhead Publishing, Cambridge, UK, pp 176–215CrossRefGoogle Scholar
  46. Tang ZG, Black RA, Curran JM, Hunt JA, Rhodes NP, Williams DF (2004) Surface properties and biocompatibility of solvent-cast poly[ε-caprolactone] films. Biomaterials 25(19):4741–4748. doi: 10.1016/j.biomaterials.2003.12.003
  47. Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51(12):2652–2660. doi: 10.1016/j.polymer.2010.04.007
  48. Ten E, Bahr DF, Li B, Jiang L, Wolcott MP (2012) Effects of cellulose nanowhiskers on mechanical, dielectric, and rheological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites. Ind Eng Chem Res 51(7):2941–2951. doi: 10.1021/ie2023367 CrossRefGoogle Scholar
  49. Ueberreiter K (1968) The solution process. In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, New York, pp 219–257Google Scholar
  50. Venkateshwaran N, Elayaperumal A, Sathiya GK (2012) Prediction of tensile properties of hybrid-natural fiber composites. Compos Part B Eng 43(2):793–796. doi: 10.1016/j.compositesb.2011.08.023
  51. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264. doi: 10.1016/S0266-3538(03)00096-4
  52. Yamauchi K, Yamauchi A, Kusunoki T, Kohda A, Konishi Y (1996) Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res 31(4):439–444. doi: 10.1002/(SICI)1097-4636(199608)31:4<439::AID-JBM1>3.0.CO;2-M CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Mechanical, Materials and Manufacturing EngineeringUniversity of Nottingham Malaysia CampusSemenyihMalaysia
  2. 2.Department of Biomedical EngineeringUniversity of King FaisalAl-HofufSaudi Arabia

Personalised recommendations