Skip to main content

Abstract

This chapter discusses how digital assistance can be leveraged in the design of analog to digital converters. Different types of digital assistance are defined, and a few of the possible applications selected for detailed discussion. Finally, an example of an ADC implementation heavily leveraging digital assistance is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. G. Boyacigiller, B. Weir, P. D. Bradshaw, “An Error-Correcting 14b/20μs CMOS A/D Converter,” IEEE ISSCC 1981

    Google Scholar 

  2. B. Murmann, “Digitally assisted data converter design,” IEEE ESSCIRC, September 2013, pp. 24–31

    Google Scholar 

  3. B. Murmann, “ADC Performance Survey 1997-2013,” [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html

  4. B. Setterberg, et al., “A 14b 2.5GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction,” IEEE ISSCC 2013

    Google Scholar 

  5. G. Van der Plas, et al., “A 0.16pJ/Conversion-Step 2.5mW 1.25GS/s 4b ADC in a 90 nm Digital CMOS Process,” IEEE ISSCC 2006

    Google Scholar 

  6. B. Verbruggen, et al., “A 1.7mW 11b 250MS/s 2× interleaved fully dynamic pipelined SAR ADC in 40 nm digital CMOS,” IEEE JSSC, Vol. 47, No. 12, December 2012, pp. 2880–2887

    Google Scholar 

  7. A. Shikata, et al., “A 0.5 V 1.1 MS/sec 6.3 fJ/Conversion-Step SAR-ADC With Tri-Level Comparator in 40 nm CMOS,” IEEE JSSC, Vol. 47, No. 4, April 2012, pp. 1022–1030

    Google Scholar 

  8. T. Kobayashi, et al., “A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture,” IEEE JSSC, Vol. 28, No. 4, April 1993, pp. 523–527

    Google Scholar 

  9. M. Miyahara, et al., “A low-offset latched comparator using zero-static power dynamic offset cancellation technique,” IEEE ASSCC 2009

    Google Scholar 

  10. M.-J. E. Lee, et al., “Low-power area-efficient high-speed I/O circuit techniques,” IEEE JSSC, Vol. 35, No. 11, November 2000, pp. 1591–1599

    Google Scholar 

  11. F. H. Gebara, et al., “A body-driven offset cancellation technique in PD-SOI,” International Conference on Microelectronics, May 2004, Vol. 2, pp. 567–570

    Google Scholar 

  12. B. Verbruggen, et al., “A 2.2 mW 1.75 GS/s 5 Bit Folding Flash ADC in 90 nm Digital CMOS,” IEEE JSSC, Vol. 44, No. 3, March 2009, pp. 874–882

    Google Scholar 

  13. Y.-S. Shu, “A 6b 3GS/s 11mW Fully Dynamic Flash ADC in 40 nm CMOS with Reduced Number of Comparators,” Symposium on VLSI Circuits, June 2012, pp. 26–27

    Google Scholar 

  14. V. H.-C. Chen, et al., “An 8.5mW 5GS/s 6b flash ADC with dynamic offset calibration in 32 nm CMOS SOI,” Symposium on VLSI Circuits, June 2013, pp. 264–265

    Google Scholar 

  15. V. Giannini, et al., “An 820 μW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90 nm Digital CMOS,” IEEE ISSCC 2008

    Google Scholar 

  16. G. Van der Plas, et al., “A 150 MS/s 133 μW 7 bit ADC in 90 nm Digital CMOS,” IEEE JSSC, Vol. 43, No. 12, December 2008, pp. 2631–2640

    Google Scholar 

  17. Y. Nakajima, et al., “A Background Self-Calibrated 6b 2.7 GS/s ADC With Cascade-Calibrated Folding-Interpolating Architecture,” IEEE JSSC, Vol. 45, No. 4, April 2010, pp. 707–718

    Google Scholar 

  18. Z. Gu, et al., “A novel self-calibrating scheme for video-rate 2-step flash analog-to-digital converter,” IEEE International Symposium on Circuits and Systems, May 1992, Vol. 2, pp. 601–604

    Google Scholar 

  19. B. Verbruggen, et al., “A 2.1 mW 11b 410 MS/s dynamic pipelined SAR ADC with background calibration in 28 nm digital CMOS,” Symposium on VLSI Circuits, June 2013, pp. 268–269

    Google Scholar 

  20. J. K Fiorenza, et al., “Comparator-Based Switched-Capacitor Circuits for Scaled CMOS Technologies,” IEEE JSSC, Vol. 41, No. 12, December 2006, pp. 2658–2668

    Google Scholar 

  21. B. Hershberg, et al., “Ring Amplifiers for Switched Capacitor Circuits,” IEEE JSSC, Vol. 47, No. 12, December 2012, pp. 2928–2942

    Google Scholar 

  22. B. Murmann, et al., “A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification,” IEEE JSSC, Vol. 38, No. 12, December 2003, pp. 2040–2050

    Google Scholar 

  23. M. Anthony, et al., “A process-scalable low-power charge-domain 13-bit pipeline ADC,” Symposium on VLSI Circuits, June 2008, pp. 222–223

    Google Scholar 

  24. N. Dolev, et al., “A 12-bit, 200-MS/s, 11.5-mW pipeline ADC using a pulsed bucket brigade front-end,” Symposium on VLSI Circuits, June 2013, pp. 98–99

    Google Scholar 

  25. J. Hu, et al., “A 9.4-bit, 50-MS/s, 1.44-mW Pipelined ADC Using Dynamic Source Follower Residue Amplification,” IEEE JSSC, Vol. 44, No. 4, April 2009, pp. 1057–1066

    Google Scholar 

  26. S.-H. W. Chiang, et al., “A 10-Bit 800-MHz 19-mW CMOS ADC,” Symposium on VLSI Circuits, June 2013, pp. 100–101

    Google Scholar 

  27. L. Brooks, et al., “Background Calibration of Pipelined ADCs Via Decision Boundary Gap Estimation,” IEEE TCAS I, Vol. 55, No. 10, November 2008, pp. 2969–2979

    Google Scholar 

  28. M. J. M. Pelgrom, et al., “Matching properties of MOS transistors,” IEEE JSSC, Vol. 24, No. 5, October 1989, pp. 1433–1439

    Google Scholar 

  29. P. Harpe, et al., “A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” IEEE ISSCC 2013

    Google Scholar 

  30. N. Verma, et al., “A 25/spl mu/W 100kS/s 12b ADC for wireless micro-sensor applications,” IEEE ISSCC 2006

    Google Scholar 

  31. C.-C. Liu, et al., “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE JSSC, Vol. 45, No. 4, April 2010, pp. 731–740

    Google Scholar 

  32. E. J. Siragusa, et al., “Gain error correction technique for pipelined analogue-to-digital converters,” Electronics Letters, vol. 36, no. 7, March 2000, pp. 617–618

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Masao Iriguchi, Manuel de la Guia Solaz, Guy Glorieux, Kazuaki Deguchi, Badr Malki, Ewout Martens and Jan Craninckx for their contributions to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob Verbruggen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verbruggen, B. (2015). Digitally Assisted Analog to Digital Converters. In: Harpe, P., Baschirotto, A., Makinwa, K. (eds) High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-07938-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07938-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07937-0

  • Online ISBN: 978-3-319-07938-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics