Skip to main content

Abstract

Transceivers for wireless communications at millimeter-waves are becoming pervasive in several commercial fields. Taking advantage of a cut-off frequency of hundreds of GHz, CMOS technology is rapidly expanding from Radio Frequency to Millimeter-Waves, thus enabling low-cost compact solutions. The question we raise in this article is whether scaling is just providing advantages at mm-waves or not. We present experimental data of single devices, comparing 65 and 32 nm nodes in a wide-frequency range. In particular, switches used in VCOs for tank components tuning, MOM and AMOS capacitors, inductors. fT and fMAX increase though slower than in the past, ron*Coff, a figure of merit for switches, improves correspondingly. As a consequence, wide-band circuits benefit from scaling to 32 nm. As an example, a frequency divider-by-4, based on differential pairs used as dynamic latches, realized in both technology nodes and able to operate up to 108 GHz, is discussed. On the contrary, passive components do not improve and eventually degrade their performances. As a consequence, a conventional LC VCO, relying on tank quality factor, is not expected to improve. In this work we discuss a new topology for Voltage Controlled Oscillators, based on inductor splitting, showing low noise and wide tuning range in ultra-scaled nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Razavi, B., “Gadgets Gab at 60 Ghz,”Spectrum, IEEE, vol. 45, no. 2, pp. 46,58, Feb. 2008

    Google Scholar 

  2. Jinglin Shi; Kai Kang; Yong Zhong Xiong; Brinkhoff, J.; Lin, F.; Xiao-Jun Yuan, “Millimeter-Wave Passives in 45-nm Digital CMOS,”Electron Device Letters, IEEE, vol. 31, no. 10, pp. 1080,1082, Oct. 2010

    Google Scholar 

  3. Jan, C. -H; Agostinelli, M.; Deshpande, H.; El-Tanani, M.A.; Hafez, W.; Jalan, U.; Janbay, L.; Kang, M.; Lakdawala, H.; Lin, J.; Lu, Y.-L.; Mudanai, S.; Park, J.; Rahman, A.; Rizk, J.; Shin, W.-K.; Soumyanath, K.; Tashiro, H.; Tsai, C.; Vandervoorn, P.; Yeh, J.-Y; Bai, P., “RF CMOS technology scaling in High-k/metal gate era for RF SoC (system-on-chip) applications,”Electron Devices Meeting (IEDM), 2010 IEEE International, vol., no., pp. 27.2.1,27.2.4, 6–8 Dec. 2010

    Google Scholar 

  4. Decanis, U.; Ghilioni, A.; Monaco, E.; Mazzanti, A.; Svelto, F., “A Low-Noise Quadrature VCO Based on Magnetically Coupled Resonators and a Wideband Frequency Divider at Millimeter Waves,”Solid-State Circuits, IEEE Journal of, vol. 46, no. 12, pp. 2943,2955, Dec. 2011

    Google Scholar 

  5. Ghilioni, A.; Mazzanti, A.; Svelto, F., “Analysis and Design of mm-Wave Frequency Dividers Based on Dynamic Latches With Load Modulation,”Solid-State Circuits, IEEE Journal of, vol. 48, no. 8, pp. 1842,1850, Aug. 2013

    Google Scholar 

  6. Mammei, E.; Monaco, E.; Mazzanti, A.; Svelto, F., “A 33.6-to-46.2 GHz 32 nm CMOS VCO with 177.5dBc/Hz minimum noise FOM using inductor splitting for tuning extension,”Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, vol., no., pp. 350,351, 17–21 Feb. 2013

    Google Scholar 

  7. Changhua Cao; Eunyoung Seok; O, K.K., “Millimeter-Wave CMOS Voltage-Controlled Oscillators,”Radio and Wireless Symposium, 2007 IEEE, vol., no., pp. 185,188, 9–11 Jan. 2007

    Google Scholar 

  8. Changhua Cao; O, K.K., “Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology,”Solid-State Circuits, IEEE Journal of, vol. 41, no. 6, pp. 1297,1304, June 2006

    Google Scholar 

  9. Dickson, T.O.; Yau, K. H K; Chalvatzis, T.; Mangan, A.M.; Laskin, E.; Beerkens, R.; Westergaard, P.; Tazlauanu, M.; Ming-Ta Yang; Voinigescu, S.P., “The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks,”Solid-State Circuits, IEEE Journal of, vol. 41, no. 8, pp. 1830,1845, Aug. 2006

    Google Scholar 

  10. Razavi, B., “A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology,”Solid-State Circuits, IEEE Journal of, vol. 46, no. 4, pp. 894,903, April 2011

    Google Scholar 

  11. Woerlee, Pierre H.; Knitel, M.J.; van Langevelde, R.; Klaassen, D. B M; Tiemeijer, L.F.; Scholten, A.J.; Zegers-van Duijnhoven, A.T.A., “RF-CMOS performance trends,” Electron Devices, IEEE Transactions on, vol. 48, no. 8, pp. 1776,1782, Aug 2001

    Google Scholar 

  12. Post, I.; Akbar, M.; Curello, G.; Gannavaram, S.; Hafez, W.; Jalan, U.; Komeyli, K.; Lin, J.; Lindert, N.; Park, J.; Rizk, J.; Sacks, G.; Tsai, C.; Yeh, D.; Bai, P.; Jan, C. -H, “A 65 nm CMOS SOC Technology Featuring Strained Silicon Transistors for RF Applications,” Electron Devices Meeting, 2006. IEDM ‘06. International, vol., no., pp. 1,3, 11–13 Dec. 2006

    Google Scholar 

  13. Shien-Yang Wu; Chou, C.W.; Lin, C.Y.; Chiang, M.C.; Yang, C.K.; Liu, M.Y.; Hu, L.C.; Chang, C.H.; Wu, P.H.; Chen, H.F.; Chang, S.Y.; Wang, S.H.; Tong, P.Y.; Hsieh, Y.L.; Liaw, J.J.; Pan, K.H.; Hsieh, C.H.; Chen, C.H.; Cheng, J.Y.; Yao, C.H.; Wan, W.K.; Lee, T.L.; Huang, K.T.; Lin, K.C.; Yeh, L.Y.; Ku, K.C.; Chen, S.C.; Lin, H.J.; Jang, S.M.; Lu, Y.C.; Shieh, J.H.; Tsai, M.H.; Song, J.Y.; Chen, K.S.; Chang, V.; Cheng, S.M.; Yang, S.H.; Diaz, C.H.; See, Y.C.; Liang, M.S., “A 32 nm CMOS Low Power SoC Platform Technology for Foundry Applications with Functional High Density SRAM,” Electron Devices Meeting, 2007. IEDM 2007. IEEE International, vol., no., pp. 263,266, 10–12 Dec. 2007

    Google Scholar 

  14. Dajiang Yang; Yuanli Ding; Huang, S., “A 65-nm High-Frequency Low-Noise CMOS-Based RF SoC Technology,” Electron Devices, IEEE Transactions on, vol. 57, no.1, pp. 328,335, Jan. 2010

    Google Scholar 

  15. Gangasani, G.R.; Kinget, P.R., “Time-Domain Model for Injection Locking in Nonharmonic Oscillators,”Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 55, no. 6, pp. 1648,1658, July 2008

    Google Scholar 

  16. Hsieh-Hung Hsieh; Fu-Lung Hsueh; Chewn-PuJou; Kuo, F.; Chen, S.; Tzu-Jin Yeh; Tan, K.K.-W.; Po-Yi Wu; Yu-Ling Lin; Ming-Hsien Tsai;, “A V-band divide-by-three differential direct injection-locked frequency divider in 65-nm CMOS,”Custom Integrated Circuits Conference (CICC), 2010 IEEE, vol., no., pp. 1–4, 19–22 Sept. 2010

    Google Scholar 

  17. Xiao Peng Yu; van Roermund, A.; Xiao Lang Yan; Cheema, H.M.; Mahmoudi, R.;, “A 3 mW 54.6 GHz Divide-by-3 Injection Locked Frequency Divider With Resistive Harmonic Enhancement,”Microwave and Wireless Components Letters, IEEE, vol. 19, no. 9, pp. 575–577, Sept. 2009

    Google Scholar 

  18. Mayr, P.; Weyers, C.; Langmann, U.;, “A 90 GHz 65 nm CMOS Injection-Locked Frequency Divider,”Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, vol., no., pp. 198–596, 11–15 Feb. 2007

    Google Scholar 

  19. Yamamoto, K.; Fujishima, M.;, “70 GHz CMOS Harmonic Injection-Locked Divider,”Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, vol., no., pp. 2472–2481, 6–9 Feb. 2006

    Google Scholar 

  20. Chung-Chun Chen; Hen-WaiTsao; Huei Wang;, “Design and Analysis of CMOS Frequency Dividers With Wide Input Locking Ranges,”Microwave Theory and Techniques, IEEE Transactions on, vol. 57, no. 12, pp. 3060–3069, Dec. 2009

    Google Scholar 

  21. Chao-An Yu; Tang-NianLuo; Chen, Y.E.;, “A V-Band Divide-by-Four Frequency Divider With Wide Locking Range and Quadrature Outputs,”Microwave and Wireless Components Letters, IEEE, vol. 22, no. 2, pp. 82–84, Feb. 2012

    Google Scholar 

  22. Liang Wu; Luong, H.C.;, “A 0.6 V 2.2mW 58-to-73 GHz divide-by-4 injection-locked frequency divider,”Custom Integrated Circuits Conference (CICC), 2012 IEEE, vol., no., pp. 1–4, 9–12 Sept. 2012

    Google Scholar 

  23. Vecchi, F.; Bozzola, S.; Temporiti, E.; Guermandi, D.; Pozzoni, M.; Repossi, M.; Cusmai, M.; Decanis, U.; Mazzanti, A.; Svelto, F., “A Wideband Receiver for Multi-Gbit/s Communications in 65 nm CMOS,”Solid-State Circuits, IEEE Journal of, vol. 46, no. 3, pp. 551,561, March 2011

    Google Scholar 

  24. Jun Yin; Luong, H.C., “A 57.5-to-90.1 GHz magnetically-tuned multi-mode CMOS VCO,”Custom Integrated Circuits Conference (CICC), 2012 IEEE, vol., no., pp. 1,4, 9–12 Sept. 2012

    Google Scholar 

  25. Nariman, M.; Rofougaran, R.; De Flaviis, F., “A switched-capacitor mm-wave VCO in 65 nm digital CMOS,”Radio Frequency Integrated Circuits Symposium (RFIC), 2010 IEEE, vol., no., pp. 157,160, 23–25 May 2010

    Google Scholar 

  26. Murphy, D.; Gu, Q.J.; Yi-Cheng Wu; Heng-Yu Jian; Xu, Z.; Tang, A.; Wang, F.; Chang, M.-C.F., “A Low Phase Noise, Wideband and Compact CMOS PLL for Use in a Heterodyne 802.15.3c Transceiver,”Solid-State Circuits, IEEE Journal of, vol. 46, no. 7, pp. 1606,1617, July 2011

    Google Scholar 

  27. Osorio, J.F.; Vaucher, C.S.; Huff, B.; v.d.Heijden, E.; Anton de Graauw, “A 21.7-to-27.8 GHz 2.6-degrees-rms 40Mw frequency synthesizer in 45 nm CMOS for mm-Wave communication applications,”Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, vol., no., pp. 278,280, 20–24 Feb. 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Svelto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Svelto, F., Ghilioni, A., Monaco, E., Mammei, E., Mazzanti, A. (2015). The Impact of CMOS Scaling on the Design of Circuits for mm-Wave Frequency Synthesizers. In: Harpe, P., Baschirotto, A., Makinwa, K. (eds) High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-07938-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07938-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07937-0

  • Online ISBN: 978-3-319-07938-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics