Abstract
The neonatal Fc receptor, FcRn, is related to MHC class I with respect to its structure and association with β2microglobulin (β2m). However, by contrast with MHC class I molecules, FcRn does not bind to peptides, but interacts with the Fc portion of IgGs and belongs to the Fc receptor family. Unlike the ‘classical’ Fc receptors, however, the primary functions of FcRn include salvage of IgG (and albumin) from lysosomal degradation through the recycling and transcytosis of IgG within cells. The characteristic feature of FcRn is pH-dependent binding to IgG, with relatively strong binding at acidic pH (<6.5) and negligible binding at physiological pH (7.3–7.4). FcRn is expressed in many different cell types, and endothelial and hematopoietic cells are the dominant cell types involved in IgG homeostasis in vivo. FcRn also delivers IgG across cellular barriers to sites of pathogen encounter and consequently plays a role in protection against infections, in addition to regulating renal filtration and immune complex-mediated antigen presentation. Further, FcRn has been targeted to develop both IgGs with extended half-lives and FcRn inhibitors that can lower endogenous antibody levels. These approaches have implications for the development of longer lived therapeutics and the removal of pathogenic or deleterious antibodies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- APCs:
-
Antigen presenting cells
- BBB:
-
Blood–brain barrier
- CNS:
-
Central nervous system
- DCs:
-
Dendritic cells
- ECs:
-
Endothelial cells
- FcRn:
-
Neonatal Fc receptor
- GBM:
-
Glomerular basement membrane
- HCs:
-
Hematopoietic cells
- HIV:
-
Human immunodeficiency virus
- HSV:
-
Herpes simplex virus
- ICs:
-
Immune complexes
- Ig:
-
Immunoglobulin
- IVIG:
-
Intravenous immunoglobulin
- KO:
-
Knockout
- LP:
-
Lamina propria
- mAbs:
-
Monoclonal antibodies
- MALT:
-
Mucosa-associated lymphoid tissue
- MHC:
-
Major histocompatibility
- MLNs:
-
Mesenteric lymph nodes
- Myo Vb:
-
Motor myosin Vb
- OVA:
-
Ovalbumin
- PCT:
-
Proximal convoluted tubule
- β2m:
-
β2microglobulin
- TC:
-
Transport carrier
- TLR:
-
Toll-like receptor
- WT:
-
Wildtype
References
Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53
Abuqayyas L, Balthasar JP (2013) Investigation of the role of FcγR and FcRn in mAb distribution to the brain. Mol Pharm 10(5):1505–1513
Agola JO, Jim PA, Ward HH et al (2011) Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities. Clin Genet 80(4):305–318
Akilesh S, Christianson GJ, Roopenian DC et al (2007) Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol 179(7):4580–4588
Akilesh S, Huber TB, Wu H et al (2008) Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc Natl Acad Sci USA 105(3):967–972
Andersen JT, Dee Qian J, Sandlie I (2006) The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin. Eur J Immunol 36(11):3044–3051
Andersen JT, Foss S, Kenanova VE et al (2012) Anti-carcinoembryonic antigen single-chain variable fragment antibody variants bind mouse and human neonatal Fc receptor with different affinities that reveal distinct cross-species differences in serum half-life. J Biol Chem 287(27):22927–22937
Antohe F, Radulescu L, Gafencu A et al (2001) Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62(2):93–105
Appleby P, Catty D (1983) Transmission of immunoglobulin to foetal and neonatal mice. J Reprod Immunol 5(4):203–213
Asano K, Nabeyama A, Miyake Y et al (2011) CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34(1):85–95
Baker K, Qiao SW, Kuo TT et al (2011) Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8-CD11b+ dendritic cells. Proc Natl Acad Sci USA 108(24):9927–9932
Borvak J, Richardson J, Medesan C et al (1998) Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int Immunol 10(9):1289–1298
Brambell FWR (1970) The transmission of passive immunity from mother to young. North Holland Publ Corp, Amsterdam
Bry L, Brenner MB (2004) Critical role of T cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen. J Immunol 172(1):433–441
Cauza K, Hinterhuber G, Ngelmaier-Hovorka R et al (2005) Expression of FcRn, the MHC class I-related receptor for IgG, in human keratinocytes. J Invest Dermatol 124(1):132–139
Challa DK, Bussmeyer U, Khan T et al (2013) Autoantibody depletion ameliorates disease in murine experimental autoimmune encephalomyelitis. MAbs 5(5):655–659
Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10(5):301–316
Chaudhury C, Mehnaz S, Robinson JM et al (2003) The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med 197(3):315–322
Christianson GJ, Sun VZ, Akilesh S et al (2012) Monoclonal antibodies directed against human FcRn and their applications. MAbs 4(2)
Cianga P, Cianga C, Cozma L et al (2003) The MHC class I related Fc receptor, FcRn, is expressed in the epithelial cells of the human mammary gland. Hum Immunol 64(12):1152–1159
Claypool SM, Dickinson BL, Wagner JS et al (2004) Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fc-γ receptor. Mol Biol Cell 15:1746–1759
Claypool SM, Dickinson BL, Yoshida M et al (2002) Functional reconstitution of human FcRn in Madin-Darby canine kidney cells requires co-expressed human beta 2-microglobulin. J Biol Chem 277(31):28038–28050
Colvin RB, Smith RN (2005) Antibody-mediated organ-allograft rejection. Nat Rev Immunol 5(10):807–817
Conti-Fine BM, Milani M, Kaminski HJ (2006) Myasthenia gravis: past, present, and future. J Clin Invest 116(11):2843–2854
Cooper PR, Ciambrone GJ, Kliwinski CM et al (2013) Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res 1534:13–21
Dall’Acqua W, Woods RM, Ward ES et al (2002) Increasing the affinity of a human IgG1 to the neonatal Fc receptor: biological consequences. J Immunol 169(9):5171–5180
Dall’Acqua WF, Kiener PA, Wu H (2006) Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 281(33):23514–23524
Dati F, Schumann G, Thomas L et al (1996) Consensus of a group of professional societies and diagnostic companies on guidelines for interim reference ranges for 14 proteins in serum based on the standardization against the IFCC/BCR/CAP Reference Material (CRM 470). International federation of clinical chemistry. Community bureau of reference of the commission of the European communities. College of American pathologists. Eur J Clin Chem Clin Biochem 34(6):517–520
Deane R, Sagare A, Hamm K et al (2005) IgG-assisted age-dependent clearance of Alzheimer’s amyloid beta peptide by the blood-brain barrier neonatal Fc receptor. J Neurosci 25(50):11495–11503
Dickinson BL, Badizadegan K, Wu Z et al (1999) Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 104(7):903–911
Dickinson BL, Claypool SM, D’Angelo JA et al (2008) Ca2 + -dependent calmodulin binding to FcRn affects immunoglobulin G transport in the transcytotic pathway. Mol Biol Cell 19(1):414–423
Firan M, Bawdon R, Radu C et al (2001) The MHC class I related receptor, FcRn, plays an essential role in the maternofetal transfer of gammaglobulin in humans. Int Immunol 13:993–1002
Fox SI (2011) Human physiology, 12th edn. McGraw-Hill, New York, pp 577–585
Gan Z, Ram S, Ober RJ et al (2013) Using multifocal plane microscopy to reveal novel trafficking processes in the recycling pathway. J Cell Sci 126(Pt 5):1176–1188
Gan Z, Ram S, Vaccaro C et al (2009) Analyses of the recycling receptor, FcRn, in live cells reveal novel pathways for lysosomal delivery. Traffic 10(5):600–614
Garg A, Balthasar JP (2009) Investigation of the influence of FcRn on the distribution of IgG to the brain. AAPS J 11(3):553–557
Getman KE, Balthasar JP (2005) Pharmacokinetic effects of 4C9, an anti-FcRn antibody, in rats: implications for the use of FcRn inhibitors for the treatment of humoral autoimmune and alloimmune conditions. J Pharm Sci 94(4):718–729
Ghetie V, Hubbard JG, Kim JK et al (1996) Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26(3):690–696
Ghetie V, Popov S, Borvak J et al (1997) Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol 15(7):637–640
Guilliams M, Bruhns P, Saeys Y et al (2014) The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol 14(2):94–108
Gupta S, Gach JS, Becerra JC et al (2013) The neonatal Fc receptor (FcRn) enhances human immunodeficiency virus type 1 (HIV-1) transcytosis across epithelial cells. PLoS Pathog 9(11):e1003776
Hammer JA 3rd, Sellers JR (2012) Walking to work: roles for class V myosins as cargo transporters. Nat Rev Mol Cell Biol 13(1):13–26
Hansen RJ, Balthasar JP (2002) Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood 100(6):2087–2093
Hanson LA, Brandzaeg P (1980) The mucosal defense system. In: Stiehm ER, Fulginity VA (eds) Immunologic disorders in infants and children. 2nd edn. Saunder WB, Philadelphia, pp 137–164
Haymann JP, Levraud JP, Bouet S et al (2000) Characterization and localization of the neonatal Fc receptor in adult human kidney. J Am Soc Nephrol 11(4):632–639
Heatwole C, Johnson N, Holloway R et al (2011) Plasma exchange versus intravenous immunoglobulin for myasthenia gravis crisis: an acute hospital cost comparison study. J Clin Neuromuscul Dis 13(2):85–94
Hildner K, Edelson BT, Purtha WE et al (2008) Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100
Hinton PR, Johlfs MG, Xiong JM et al (2004) Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 279(8):6213–6216
Hinton PR, Xiong JM, Johlfs MG et al (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176(1):346–356
Hogarth PM, Pietersz GA (2012) Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov 11(4):311–331
Houde M, Bertholet S, Gagnon E et al (2003) Phagosomes are competent organelles for antigen cross-presentation. Nature 425(6956):402–406
Israel EJ, Taylor S, Wu Z et al (1997) Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 92(1):69–74
Israel EJ, Wilsker DF, Hayes KC et al (1996) Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 89(4):573–578
Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112(4):519–533
Jarius S, Wildemann B (2010) AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 6(7):383–392
Johansson M, Lycke NY (2003) Immunology of the human genital tract. Curr Opin Infect Dis 16(1):43–49
Jones EA, Waldmann TA (1972) The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest 51(11):2916–2927
Junghans RP, Anderson CL (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93(11):5512–5516
Kim H, Fariss RN, Zhang C et al (2008) Mapping of the neonatal Fc receptor in the rodent eye. Invest Ophthalmol Vis Sci 49(5):2025–2029
Kim JK, Firan M, Radu CG et al (1999) Mapping the site on human IgG for binding of the MHC class I-related receptor. FcRn. Eur J Immunol 29(9):2819–2825
Kobayashi K, Qiao SW, Yoshida M et al (2009) An FcRn-dependent role for anti-flagellin immunoglobulin G in pathogenesis of colitis in mice. Gastroenterology 137(5):1746–1756 e1741
Kobayashi N, Suzuki Y, Tsuge T et al (2002) FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells. Am J Physiol Renal Physiol 282(2):F358–F365
Kozlowski PA, Cu-Uvin S, Neutra MR et al (1997) Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun 65(4):1387–1394
Kuo TT, Baker K, Yoshida M et al (2010) Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol 30(6):777–789
Kuo TT, de Muinck EJ, Claypool SM et al (2009) N-Glycan moieties in neonatal Fc receptor determine steady-state membrane distribution and directional transport of IgG. J Biol Chem 284(13):8292–8300
Kurts C, Robinson BW, Knolle PA (2010) Cross-priming in health and disease. Nat Rev Immunol 10(6):403–414
Leach JL, Sedmak DD, Osborne JM et al (1996) Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal- fetal antibody transport. J Immunol 157(8):3317–3322
Li N, Zhao M, Hilario-Vargas J et al (2005) Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest 115(12):3440–3450
Li Z, Palaniyandi S, Zeng R et al (2011) Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc Natl Acad Sci USA 108(11):4388–4393
Liu L, Garcia AM, Santoro H et al (2007a) Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade. J Immunol 178(8):5390–5398
Liu X, Ye L, Bai Y et al (2008) Activation of the JAK/STAT-1 signaling pathway by IFN-γ can down-regulate functional expression of the MHC class I-related neonatal Fc receptor for IgG. J Immunol 181(1):449–463
Liu X, Ye L, Christianson GJ et al (2007b) NF-kappaB signaling regulates functional expression of the MHC class I-related neonatal Fc receptor for IgG via intronic binding sequences. J Immunol 179(5):2999–3011
Mahmud N, Klipa D, Ahsan N (2010) Antibody immunosuppressive therapy in solid-organ transplant: Part I. MAbs 2(2):148–156
Martin MG, Wu SV, Walsh JH (1997) Ontogenetic development and distribution of antibody transport and Fc receptor mRNA expression in rat intestine. Dig Dis Sci 42(5):1062–1069
Martin WL, West AP Jr, Gan L et al (2001) Crystal structure at 2.8 Å of an FcRn/heterodimeric Fc complex: mechanism of pH dependent binding. Mol Cell 7(4):867–877
McGhee JR, Fujihashi K (2012) Inside the mucosal immune system. PLoS Biol 10(9):e1001397
Medesan C, Matesoi D, Radu C et al (1997) Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J Immunol 158(5):2211–2217
Medesan C, Radu C, Kim JK et al (1996) Localization of the site of the IgG molecule that regulates maternofetal transmission in mice. Eur J Immunol 26(10):2533–2536
Mezo AR, Low SC, Hoehn T et al (2011) PEGylation enhances the therapeutic potential of peptide antagonists of the neonatal Fc receptor FcRn. Bioorg Med Chem Lett 21(21):6332–6335
Mezo AR, McDonnell KA, Hehir CA et al (2008) Reduction of IgG in nonhuman primates by a peptide antagonist of the neonatal Fc receptor FcRn. Proc Natl Acad Sci USA 105(7):2337–2342
Miaczynska M, Zerial M (2002) Mosaic organization of the endocytic pathway. Exp Cell Res 272(1):8–14
Naparstek Y, Plotz PH (1993) The role of autoantibodies in autoimmune disease. Annu Rev Immunol 11:79–104
Neefjes J, Jongsma ML, Paul P et al (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836
Newton EE, Wu Z, Simister NE (2005) Characterization of basolateral-targeting signals in the neonatal Fc receptor. J Cell Sci 118(Pt 11):2461–2469
Nimmerjahn F, Ravetch JV (2008) Fcγ receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47
Ober RJ, Martinez C, Lai X et al (2004a) Exocytosis of IgG as mediated by the receptor, FcRn: An analysis at the single-molecule level. Proc Natl Acad Sci USA 101:11076–11081
Ober RJ, Martinez C, Vaccaro C et al (2004b) Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor. FcRn. J Immunol 172(4):2021–2029
Oganesyan V, Damschroder MM, Cook KE et al (2014) Structural insights Into neonatal Fc receptor-based recycling mechanisms. J Biol Chem 289(11):7812–7824
Orange JS, Hossny EM, Weiler CR et al (2006) Use of intravenous immunoglobulin in human disease: a review of evidence by members of the primary immunodeficiency committee of the American academy of allergy, asthma and immunology. J Allergy Clin Immunol 117(4 Suppl):S525–S553
Patel DA, Puig-Canto A, Challa DK et al (2011) Neonatal Fc receptor blockade by Fc engineering ameliorates arthritis in a murine model. J Immunol 187(2):1015–1022
Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83(1):253–307
Perez-Montoyo H, Vaccaro C, Hafner M et al (2009) Conditional deletion of the MHC Class I-related receptor, FcRn, reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci USA 106(8):2788–2793
Popescu BF, Lucchinetti CF (2012) Pathology of demyelinating diseases. Annu Rev Pathol 7:185–217
Popov S, Hubbard JG, Kim J et al (1996) The stoichiometry and affinity of the interaction of murine Fc fragments with the MHC class I-related receptor. FcRn. Mol Immunol 33(6):521–530
Powner MB, McKenzie JA, Christianson GJ et al (2014) Expression of neonatal Fc receptor in the eye. Invest Ophthalmol Vis Sci 55(3):1607–1615
Prabhat P, Gan Z, Chao J et al (2007) Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy. Proc Natl Acad Sci USA 104(14):5889–5894
Qiao SW, Kobayashi K, Johansen FE et al (2008) Dependence of antibody-mediated presentation of antigen on FcRn. Proc Natl Acad Sci USA 105(27):9337–9342
Raghavan M, Bonagura VR, Morrison SL et al (1995) Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry 34(45):14649–14657
Raghavan M, Gastinel LN, Bjorkman PJ (1993) The class I major histocompatibility complex-related Fc receptor shows pH-dependent stability differences correlating with immunoglobulin binding and release. Biochemistry 32(33):8654–8660
Reichert JM (2013) Which are the antibodies to watch in 2013? MAbs 5(1):1–4
Rodewald R, Abrahamson DR (1982) Receptor-mediated transport of IgG across the intestinal epithelium of the neonatal rat. Ciba Found Symp 92:209–232
Rodewald R, Kraehenbuhl JP (1984) Receptor-mediated transport of IgG. J Cell Biol 99(1 Pt 2):159s–164s
Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725
Roopenian DC, Christianson GJ, Sproule TJ et al (2003) The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170(7):3528–3533
Russo LM, Sandoval RM, McKee M et al (2007) The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int 71(6):504–513
Salimonu LS, Ladipo OA, Adeniran SO et al (1978) Serum immunoglobulin levels in normal, premature and postmature newborns and their mothers. Int J Gynaecol Obstet 16(2):119–123
Sanchez LM, Penny DM, Bjorkman PJ (1999) Stoichiometry of the interaction between the major histocompatibility complex-related Fc receptor and its Fc ligand. Biochemistry 38(29):9471–9476
Sarav M, Wang Y, Hack BK et al (2009) Renal FcRn reclaims albumin but facilitates elimination of IgG. J Am Soc Nephrol 20(9):1941–1952
Schlachetzki F, Zhu C, Pardridge WM (2002) Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. J Neurochem 81(1):203–206
Schuck P, Radu CG, Ward ES (1999) Sedimentation equilibrium analysis of recombinant mouse FcRn with murine IgG1. Mol Immunol 36(15–16):1117–1125
Schulz O, Jaensson E, Persson EK et al (2009) Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206(13):3101–3114
Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287
Sherer Y, Gorstein A, Fritzler MJ et al (2004) Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 34(2):501–537
Shields RL, Namenuk AK, Hong K et al (2001) High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem 276(9):6591–6604
Simister NE, Mostov KE (1989) An Fc receptor structurally related to MHC class I antigens. Nature 337(6203):184–187
Simister NE, Story CM, Chen HL et al (1996) An IgG-transporting Fc receptor expressed in the syncytiotrophoblast of human placenta. Eur J Immunol 26(7):1527–1531
Simmons DP, Wearsch PA, Canaday DH et al (2012) Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. J Immunol 188(7):3116–3126
Somsel RJ, Wandinger-Ness A (2000) Rab GTPases coordinate endocytosis. J Cell Sci 113(Pt 2):183–192
Spiegelberg HL, Fishkin BG (1972) The catabolism of human G immunoglobulins of different heavy chain subclasses. 3. The catabolism of heavy chain disease proteins and of Fc fragments of myeloma proteins. Clin Exp Immunol 10(4):599–607
Spiekermann GM, Finn PW, Ward ES et al (2002) Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 196(3):303–310
Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525
Tesar DB, Tiangco NE, Bjorkman PJ (2006) Ligand valency affects transcytosis, recycling and intracellular trafficking mediated by the neonatal Fc receptor. Traffic 7(9):1127–1142
Tzaban S, Massol RH, Yen E et al (2009) The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J Cell Biol 185(4):673–684
Vaccaro C, Bawdon R, Wanjie S et al (2006) Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc Natl Acad Sci USA 103(49):18709–18714
Vaccaro C, Zhou J, Ober RJ et al (2005) Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol 23(10):1283–1288
van Bilsen K, Bastiaans J, Dik WA et al (2010) The neonatal Fc receptor is expressed by human lymphocytes. J Transl Med 8(Suppl 1):P1
Vieira P, Rajewsky K (1988) The half-lives of serum immunoglobulins in adult mice. Eur J Immunol 18(2):313–316
Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84(5):548–558
Wani MA, Haynes LD, Kim J et al (2006) Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci USA 103(13):5084–5089
Ward ES, Martinez C, Vaccaro C et al (2005) From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling. Mol Biol Cell 16(4):2028–2038
Ward ES, Ober RJ (2009) Multitasking by exploitation of intracellular transport functions: the many faces of FcRn. Adv Immunol 103:77–115
Wartiovaara J, Ofverstedt LG, Khoshnoodi J et al (2004) Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 114(10):1475–1483
Winters JL (2012) Plasma exchange: concepts, mechanisms, and an overview of the American Society for Apheresis guidelines. Hematol Am Soc Hematol Educ Program 2012:7–12
Winters JL, Brown D, Hazard E et al (2011) Cost-minimization analysis of the direct costs of TPE and IVIg in the treatment of Guillain-Barre syndrome. BMC Health Serv Res 11:101
Woof JM, Mestecky J (2005) Mucosal immunoglobulins. Immunol Rev 206:64–82
Ye L, Liu X, Rout SN et al (2008) The MHC class II-associated invariant chain interacts with the neonatal Fcγ receptor and modulates its trafficking to endosomal/lysosomal compartments. J Immunol 181(4):2572–2585
Yeung YA, Leabman MK, Marvin JS et al (2009) Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol 182(12):7663–7671
Yoshida M, Claypool SM, Wagner JS et al (2004) Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20(6):769–783
Yoshida M, Kobayashi K, Kuo TT et al (2006) Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J Clin Invest 116(8):2142–2151
Zalevsky J, Chamberlain AK, Horton HM et al (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28(2):157–159
Zhang Y, Pardridge WM (2001) Mediated efflux of IgG molecules from brain to blood across the blood-brain barrier. J Neuroimmunol 114(1–2):168–172
Zhu X, Meng G, Dickinson BL et al (2001) MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol 166(5):3266–3276
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Challa, D.K., Velmurugan, R., Ober, R.J., Sally Ward, E. (2014). FcRn: From Molecular Interactions to Regulation of IgG Pharmacokinetics and Functions. In: Daeron, M., Nimmerjahn, F. (eds) Fc Receptors. Current Topics in Microbiology and Immunology, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-319-07911-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-07911-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07910-3
Online ISBN: 978-3-319-07911-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)