Skip to main content

FcRn: From Molecular Interactions to Regulation of IgG Pharmacokinetics and Functions

  • Chapter
  • First Online:
Fc Receptors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 382))

Abstract

The neonatal Fc receptor, FcRn, is related to MHC class I with respect to its structure and association with β2microglobulin (β2m). However, by contrast with MHC class I molecules, FcRn does not bind to peptides, but interacts with the Fc portion of IgGs and belongs to the Fc receptor family. Unlike the ‘classical’ Fc receptors, however, the primary functions of FcRn include salvage of IgG (and albumin) from lysosomal degradation through the recycling and transcytosis of IgG within cells. The characteristic feature of FcRn is pH-dependent binding to IgG, with relatively strong binding at acidic pH (<6.5) and negligible binding at physiological pH (7.3–7.4). FcRn is expressed in many different cell types, and endothelial and hematopoietic cells are the dominant cell types involved in IgG homeostasis in vivo. FcRn also delivers IgG across cellular barriers to sites of pathogen encounter and consequently plays a role in protection against infections, in addition to regulating renal filtration and immune complex-mediated antigen presentation. Further, FcRn has been targeted to develop both IgGs with extended half-lives and FcRn inhibitors that can lower endogenous antibody levels. These approaches have implications for the development of longer lived therapeutics and the removal of pathogenic or deleterious antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APCs:

Antigen presenting cells

BBB:

Blood–brain barrier

CNS:

Central nervous system

DCs:

Dendritic cells

ECs:

Endothelial cells

FcRn:

Neonatal Fc receptor

GBM:

Glomerular basement membrane

HCs:

Hematopoietic cells

HIV:

Human immunodeficiency virus

HSV:

Herpes simplex virus

ICs:

Immune complexes

Ig:

Immunoglobulin

IVIG:

Intravenous immunoglobulin

KO:

Knockout

LP:

Lamina propria

mAbs:

Monoclonal antibodies

MALT:

Mucosa-associated lymphoid tissue

MHC:

Major histocompatibility

MLNs:

Mesenteric lymph nodes

Myo Vb:

Motor myosin Vb

OVA:

Ovalbumin

PCT:

Proximal convoluted tubule

β2m:

β2microglobulin

TC:

Transport carrier

TLR:

Toll-like receptor

WT:

Wildtype

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53

    PubMed  CAS  Google Scholar 

  • Abuqayyas L, Balthasar JP (2013) Investigation of the role of FcγR and FcRn in mAb distribution to the brain. Mol Pharm 10(5):1505–1513

    PubMed  CAS  Google Scholar 

  • Agola JO, Jim PA, Ward HH et al (2011) Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities. Clin Genet 80(4):305–318

    PubMed  CAS  PubMed Central  Google Scholar 

  • Akilesh S, Christianson GJ, Roopenian DC et al (2007) Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol 179(7):4580–4588

    PubMed  CAS  Google Scholar 

  • Akilesh S, Huber TB, Wu H et al (2008) Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc Natl Acad Sci USA 105(3):967–972

    PubMed  CAS  PubMed Central  Google Scholar 

  • Andersen JT, Dee Qian J, Sandlie I (2006) The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin. Eur J Immunol 36(11):3044–3051

    PubMed  CAS  Google Scholar 

  • Andersen JT, Foss S, Kenanova VE et al (2012) Anti-carcinoembryonic antigen single-chain variable fragment antibody variants bind mouse and human neonatal Fc receptor with different affinities that reveal distinct cross-species differences in serum half-life. J Biol Chem 287(27):22927–22937

    PubMed  CAS  PubMed Central  Google Scholar 

  • Antohe F, Radulescu L, Gafencu A et al (2001) Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62(2):93–105

    PubMed  CAS  Google Scholar 

  • Appleby P, Catty D (1983) Transmission of immunoglobulin to foetal and neonatal mice. J Reprod Immunol 5(4):203–213

    PubMed  CAS  Google Scholar 

  • Asano K, Nabeyama A, Miyake Y et al (2011) CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34(1):85–95

    PubMed  CAS  Google Scholar 

  • Baker K, Qiao SW, Kuo TT et al (2011) Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8-CD11b+ dendritic cells. Proc Natl Acad Sci USA 108(24):9927–9932

    PubMed  CAS  PubMed Central  Google Scholar 

  • Borvak J, Richardson J, Medesan C et al (1998) Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int Immunol 10(9):1289–1298

    PubMed  CAS  Google Scholar 

  • Brambell FWR (1970) The transmission of passive immunity from mother to young. North Holland Publ Corp, Amsterdam

    Google Scholar 

  • Bry L, Brenner MB (2004) Critical role of T cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen. J Immunol 172(1):433–441

    PubMed  CAS  Google Scholar 

  • Cauza K, Hinterhuber G, Ngelmaier-Hovorka R et al (2005) Expression of FcRn, the MHC class I-related receptor for IgG, in human keratinocytes. J Invest Dermatol 124(1):132–139

    PubMed  CAS  Google Scholar 

  • Challa DK, Bussmeyer U, Khan T et al (2013) Autoantibody depletion ameliorates disease in murine experimental autoimmune encephalomyelitis. MAbs 5(5):655–659

    PubMed  PubMed Central  Google Scholar 

  • Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10(5):301–316

    PubMed  CAS  Google Scholar 

  • Chaudhury C, Mehnaz S, Robinson JM et al (2003) The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med 197(3):315–322

    PubMed  CAS  PubMed Central  Google Scholar 

  • Christianson GJ, Sun VZ, Akilesh S et al (2012) Monoclonal antibodies directed against human FcRn and their applications. MAbs 4(2)

    Google Scholar 

  • Cianga P, Cianga C, Cozma L et al (2003) The MHC class I related Fc receptor, FcRn, is expressed in the epithelial cells of the human mammary gland. Hum Immunol 64(12):1152–1159

    PubMed  CAS  Google Scholar 

  • Claypool SM, Dickinson BL, Wagner JS et al (2004) Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fc-γ receptor. Mol Biol Cell 15:1746–1759

    PubMed  CAS  PubMed Central  Google Scholar 

  • Claypool SM, Dickinson BL, Yoshida M et al (2002) Functional reconstitution of human FcRn in Madin-Darby canine kidney cells requires co-expressed human beta 2-microglobulin. J Biol Chem 277(31):28038–28050

    PubMed  CAS  PubMed Central  Google Scholar 

  • Colvin RB, Smith RN (2005) Antibody-mediated organ-allograft rejection. Nat Rev Immunol 5(10):807–817

    PubMed  CAS  Google Scholar 

  • Conti-Fine BM, Milani M, Kaminski HJ (2006) Myasthenia gravis: past, present, and future. J Clin Invest 116(11):2843–2854

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cooper PR, Ciambrone GJ, Kliwinski CM et al (2013) Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res 1534:13–21

    PubMed  CAS  Google Scholar 

  • Dall’Acqua W, Woods RM, Ward ES et al (2002) Increasing the affinity of a human IgG1 to the neonatal Fc receptor: biological consequences. J Immunol 169(9):5171–5180

    PubMed  Google Scholar 

  • Dall’Acqua WF, Kiener PA, Wu H (2006) Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 281(33):23514–23524

    PubMed  Google Scholar 

  • Dati F, Schumann G, Thomas L et al (1996) Consensus of a group of professional societies and diagnostic companies on guidelines for interim reference ranges for 14 proteins in serum based on the standardization against the IFCC/BCR/CAP Reference Material (CRM 470). International federation of clinical chemistry. Community bureau of reference of the commission of the European communities. College of American pathologists. Eur J Clin Chem Clin Biochem 34(6):517–520

    PubMed  CAS  Google Scholar 

  • Deane R, Sagare A, Hamm K et al (2005) IgG-assisted age-dependent clearance of Alzheimer’s amyloid beta peptide by the blood-brain barrier neonatal Fc receptor. J Neurosci 25(50):11495–11503

    PubMed  CAS  Google Scholar 

  • Dickinson BL, Badizadegan K, Wu Z et al (1999) Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 104(7):903–911

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dickinson BL, Claypool SM, D’Angelo JA et al (2008) Ca2 + -dependent calmodulin binding to FcRn affects immunoglobulin G transport in the transcytotic pathway. Mol Biol Cell 19(1):414–423

    PubMed  CAS  PubMed Central  Google Scholar 

  • Firan M, Bawdon R, Radu C et al (2001) The MHC class I related receptor, FcRn, plays an essential role in the maternofetal transfer of gammaglobulin in humans. Int Immunol 13:993–1002

    PubMed  CAS  Google Scholar 

  • Fox SI (2011) Human physiology, 12th edn. McGraw-Hill, New York, pp 577–585

    Google Scholar 

  • Gan Z, Ram S, Ober RJ et al (2013) Using multifocal plane microscopy to reveal novel trafficking processes in the recycling pathway. J Cell Sci 126(Pt 5):1176–1188

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gan Z, Ram S, Vaccaro C et al (2009) Analyses of the recycling receptor, FcRn, in live cells reveal novel pathways for lysosomal delivery. Traffic 10(5):600–614

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garg A, Balthasar JP (2009) Investigation of the influence of FcRn on the distribution of IgG to the brain. AAPS J 11(3):553–557

    PubMed  CAS  PubMed Central  Google Scholar 

  • Getman KE, Balthasar JP (2005) Pharmacokinetic effects of 4C9, an anti-FcRn antibody, in rats: implications for the use of FcRn inhibitors for the treatment of humoral autoimmune and alloimmune conditions. J Pharm Sci 94(4):718–729

    PubMed  CAS  Google Scholar 

  • Ghetie V, Hubbard JG, Kim JK et al (1996) Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26(3):690–696

    PubMed  CAS  Google Scholar 

  • Ghetie V, Popov S, Borvak J et al (1997) Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol 15(7):637–640

    PubMed  CAS  Google Scholar 

  • Guilliams M, Bruhns P, Saeys Y et al (2014) The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol 14(2):94–108

    PubMed  CAS  Google Scholar 

  • Gupta S, Gach JS, Becerra JC et al (2013) The neonatal Fc receptor (FcRn) enhances human immunodeficiency virus type 1 (HIV-1) transcytosis across epithelial cells. PLoS Pathog 9(11):e1003776

    PubMed  PubMed Central  Google Scholar 

  • Hammer JA 3rd, Sellers JR (2012) Walking to work: roles for class V myosins as cargo transporters. Nat Rev Mol Cell Biol 13(1):13–26

    CAS  Google Scholar 

  • Hansen RJ, Balthasar JP (2002) Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood 100(6):2087–2093

    PubMed  CAS  Google Scholar 

  • Hanson LA, Brandzaeg P (1980) The mucosal defense system. In: Stiehm ER, Fulginity VA (eds) Immunologic disorders in infants and children. 2nd edn. Saunder WB, Philadelphia, pp 137–164

    Google Scholar 

  • Haymann JP, Levraud JP, Bouet S et al (2000) Characterization and localization of the neonatal Fc receptor in adult human kidney. J Am Soc Nephrol 11(4):632–639

    PubMed  CAS  Google Scholar 

  • Heatwole C, Johnson N, Holloway R et al (2011) Plasma exchange versus intravenous immunoglobulin for myasthenia gravis crisis: an acute hospital cost comparison study. J Clin Neuromuscul Dis 13(2):85–94

    PubMed  PubMed Central  Google Scholar 

  • Hildner K, Edelson BT, Purtha WE et al (2008) Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hinton PR, Johlfs MG, Xiong JM et al (2004) Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 279(8):6213–6216

    PubMed  CAS  Google Scholar 

  • Hinton PR, Xiong JM, Johlfs MG et al (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176(1):346–356

    PubMed  CAS  Google Scholar 

  • Hogarth PM, Pietersz GA (2012) Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov 11(4):311–331

    PubMed  CAS  Google Scholar 

  • Houde M, Bertholet S, Gagnon E et al (2003) Phagosomes are competent organelles for antigen cross-presentation. Nature 425(6956):402–406

    PubMed  CAS  Google Scholar 

  • Israel EJ, Taylor S, Wu Z et al (1997) Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 92(1):69–74

    PubMed  CAS  PubMed Central  Google Scholar 

  • Israel EJ, Wilsker DF, Hayes KC et al (1996) Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 89(4):573–578

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112(4):519–533

    PubMed  CAS  Google Scholar 

  • Jarius S, Wildemann B (2010) AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 6(7):383–392

    PubMed  CAS  Google Scholar 

  • Johansson M, Lycke NY (2003) Immunology of the human genital tract. Curr Opin Infect Dis 16(1):43–49

    PubMed  CAS  Google Scholar 

  • Jones EA, Waldmann TA (1972) The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest 51(11):2916–2927

    PubMed  CAS  PubMed Central  Google Scholar 

  • Junghans RP, Anderson CL (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93(11):5512–5516

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim H, Fariss RN, Zhang C et al (2008) Mapping of the neonatal Fc receptor in the rodent eye. Invest Ophthalmol Vis Sci 49(5):2025–2029

    PubMed  PubMed Central  Google Scholar 

  • Kim JK, Firan M, Radu CG et al (1999) Mapping the site on human IgG for binding of the MHC class I-related receptor. FcRn. Eur J Immunol 29(9):2819–2825

    CAS  Google Scholar 

  • Kobayashi K, Qiao SW, Yoshida M et al (2009) An FcRn-dependent role for anti-flagellin immunoglobulin G in pathogenesis of colitis in mice. Gastroenterology 137(5):1746–1756 e1741

    Google Scholar 

  • Kobayashi N, Suzuki Y, Tsuge T et al (2002) FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells. Am J Physiol Renal Physiol 282(2):F358–F365

    PubMed  Google Scholar 

  • Kozlowski PA, Cu-Uvin S, Neutra MR et al (1997) Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun 65(4):1387–1394

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuo TT, Baker K, Yoshida M et al (2010) Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol 30(6):777–789

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuo TT, de Muinck EJ, Claypool SM et al (2009) N-Glycan moieties in neonatal Fc receptor determine steady-state membrane distribution and directional transport of IgG. J Biol Chem 284(13):8292–8300

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kurts C, Robinson BW, Knolle PA (2010) Cross-priming in health and disease. Nat Rev Immunol 10(6):403–414

    PubMed  CAS  Google Scholar 

  • Leach JL, Sedmak DD, Osborne JM et al (1996) Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal- fetal antibody transport. J Immunol 157(8):3317–3322

    PubMed  CAS  Google Scholar 

  • Li N, Zhao M, Hilario-Vargas J et al (2005) Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest 115(12):3440–3450

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li Z, Palaniyandi S, Zeng R et al (2011) Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc Natl Acad Sci USA 108(11):4388–4393

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu L, Garcia AM, Santoro H et al (2007a) Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade. J Immunol 178(8):5390–5398

    PubMed  CAS  Google Scholar 

  • Liu X, Ye L, Bai Y et al (2008) Activation of the JAK/STAT-1 signaling pathway by IFN-γ can down-regulate functional expression of the MHC class I-related neonatal Fc receptor for IgG. J Immunol 181(1):449–463

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu X, Ye L, Christianson GJ et al (2007b) NF-kappaB signaling regulates functional expression of the MHC class I-related neonatal Fc receptor for IgG via intronic binding sequences. J Immunol 179(5):2999–3011

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mahmud N, Klipa D, Ahsan N (2010) Antibody immunosuppressive therapy in solid-organ transplant: Part I. MAbs 2(2):148–156

    PubMed  PubMed Central  Google Scholar 

  • Martin MG, Wu SV, Walsh JH (1997) Ontogenetic development and distribution of antibody transport and Fc receptor mRNA expression in rat intestine. Dig Dis Sci 42(5):1062–1069

    PubMed  CAS  Google Scholar 

  • Martin WL, West AP Jr, Gan L et al (2001) Crystal structure at 2.8 Å of an FcRn/heterodimeric Fc complex: mechanism of pH dependent binding. Mol Cell 7(4):867–877

    PubMed  CAS  Google Scholar 

  • McGhee JR, Fujihashi K (2012) Inside the mucosal immune system. PLoS Biol 10(9):e1001397

    PubMed  CAS  PubMed Central  Google Scholar 

  • Medesan C, Matesoi D, Radu C et al (1997) Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J Immunol 158(5):2211–2217

    PubMed  CAS  Google Scholar 

  • Medesan C, Radu C, Kim JK et al (1996) Localization of the site of the IgG molecule that regulates maternofetal transmission in mice. Eur J Immunol 26(10):2533–2536

    PubMed  CAS  Google Scholar 

  • Mezo AR, Low SC, Hoehn T et al (2011) PEGylation enhances the therapeutic potential of peptide antagonists of the neonatal Fc receptor FcRn. Bioorg Med Chem Lett 21(21):6332–6335

    PubMed  CAS  Google Scholar 

  • Mezo AR, McDonnell KA, Hehir CA et al (2008) Reduction of IgG in nonhuman primates by a peptide antagonist of the neonatal Fc receptor FcRn. Proc Natl Acad Sci USA 105(7):2337–2342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miaczynska M, Zerial M (2002) Mosaic organization of the endocytic pathway. Exp Cell Res 272(1):8–14

    PubMed  CAS  Google Scholar 

  • Naparstek Y, Plotz PH (1993) The role of autoantibodies in autoimmune disease. Annu Rev Immunol 11:79–104

    PubMed  CAS  Google Scholar 

  • Neefjes J, Jongsma ML, Paul P et al (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836

    PubMed  CAS  Google Scholar 

  • Newton EE, Wu Z, Simister NE (2005) Characterization of basolateral-targeting signals in the neonatal Fc receptor. J Cell Sci 118(Pt 11):2461–2469

    PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2008) Fcγ receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47

    PubMed  CAS  Google Scholar 

  • Ober RJ, Martinez C, Lai X et al (2004a) Exocytosis of IgG as mediated by the receptor, FcRn: An analysis at the single-molecule level. Proc Natl Acad Sci USA 101:11076–11081

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ober RJ, Martinez C, Vaccaro C et al (2004b) Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor. FcRn. J Immunol 172(4):2021–2029

    CAS  Google Scholar 

  • Oganesyan V, Damschroder MM, Cook KE et al (2014) Structural insights Into neonatal Fc receptor-based recycling mechanisms. J Biol Chem 289(11):7812–7824

    PubMed  Google Scholar 

  • Orange JS, Hossny EM, Weiler CR et al (2006) Use of intravenous immunoglobulin in human disease: a review of evidence by members of the primary immunodeficiency committee of the American academy of allergy, asthma and immunology. J Allergy Clin Immunol 117(4 Suppl):S525–S553

    PubMed  CAS  Google Scholar 

  • Patel DA, Puig-Canto A, Challa DK et al (2011) Neonatal Fc receptor blockade by Fc engineering ameliorates arthritis in a murine model. J Immunol 187(2):1015–1022

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83(1):253–307

    PubMed  CAS  Google Scholar 

  • Perez-Montoyo H, Vaccaro C, Hafner M et al (2009) Conditional deletion of the MHC Class I-related receptor, FcRn, reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci USA 106(8):2788–2793

    Google Scholar 

  • Popescu BF, Lucchinetti CF (2012) Pathology of demyelinating diseases. Annu Rev Pathol 7:185–217

    PubMed  CAS  Google Scholar 

  • Popov S, Hubbard JG, Kim J et al (1996) The stoichiometry and affinity of the interaction of murine Fc fragments with the MHC class I-related receptor. FcRn. Mol Immunol 33(6):521–530

    CAS  Google Scholar 

  • Powner MB, McKenzie JA, Christianson GJ et al (2014) Expression of neonatal Fc receptor in the eye. Invest Ophthalmol Vis Sci 55(3):1607–1615

    Google Scholar 

  • Prabhat P, Gan Z, Chao J et al (2007) Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy. Proc Natl Acad Sci USA 104(14):5889–5894

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qiao SW, Kobayashi K, Johansen FE et al (2008) Dependence of antibody-mediated presentation of antigen on FcRn. Proc Natl Acad Sci USA 105(27):9337–9342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raghavan M, Bonagura VR, Morrison SL et al (1995) Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry 34(45):14649–14657

    PubMed  CAS  Google Scholar 

  • Raghavan M, Gastinel LN, Bjorkman PJ (1993) The class I major histocompatibility complex-related Fc receptor shows pH-dependent stability differences correlating with immunoglobulin binding and release. Biochemistry 32(33):8654–8660

    PubMed  CAS  Google Scholar 

  • Reichert JM (2013) Which are the antibodies to watch in 2013? MAbs 5(1):1–4

    PubMed  PubMed Central  Google Scholar 

  • Rodewald R, Abrahamson DR (1982) Receptor-mediated transport of IgG across the intestinal epithelium of the neonatal rat. Ciba Found Symp 92:209–232

    PubMed  CAS  Google Scholar 

  • Rodewald R, Kraehenbuhl JP (1984) Receptor-mediated transport of IgG. J Cell Biol 99(1 Pt 2):159s–164s

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725

    PubMed  CAS  Google Scholar 

  • Roopenian DC, Christianson GJ, Sproule TJ et al (2003) The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170(7):3528–3533

    PubMed  CAS  Google Scholar 

  • Russo LM, Sandoval RM, McKee M et al (2007) The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int 71(6):504–513

    PubMed  CAS  Google Scholar 

  • Salimonu LS, Ladipo OA, Adeniran SO et al (1978) Serum immunoglobulin levels in normal, premature and postmature newborns and their mothers. Int J Gynaecol Obstet 16(2):119–123

    PubMed  Google Scholar 

  • Sanchez LM, Penny DM, Bjorkman PJ (1999) Stoichiometry of the interaction between the major histocompatibility complex-related Fc receptor and its Fc ligand. Biochemistry 38(29):9471–9476

    PubMed  CAS  Google Scholar 

  • Sarav M, Wang Y, Hack BK et al (2009) Renal FcRn reclaims albumin but facilitates elimination of IgG. J Am Soc Nephrol 20(9):1941–1952

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schlachetzki F, Zhu C, Pardridge WM (2002) Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. J Neurochem 81(1):203–206

    PubMed  CAS  Google Scholar 

  • Schuck P, Radu CG, Ward ES (1999) Sedimentation equilibrium analysis of recombinant mouse FcRn with murine IgG1. Mol Immunol 36(15–16):1117–1125

    PubMed  CAS  Google Scholar 

  • Schulz O, Jaensson E, Persson EK et al (2009) Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206(13):3101–3114

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287

    PubMed  CAS  Google Scholar 

  • Sherer Y, Gorstein A, Fritzler MJ et al (2004) Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 34(2):501–537

    PubMed  CAS  Google Scholar 

  • Shields RL, Namenuk AK, Hong K et al (2001) High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem 276(9):6591–6604

    PubMed  CAS  Google Scholar 

  • Simister NE, Mostov KE (1989) An Fc receptor structurally related to MHC class I antigens. Nature 337(6203):184–187

    PubMed  CAS  Google Scholar 

  • Simister NE, Story CM, Chen HL et al (1996) An IgG-transporting Fc receptor expressed in the syncytiotrophoblast of human placenta. Eur J Immunol 26(7):1527–1531

    PubMed  CAS  Google Scholar 

  • Simmons DP, Wearsch PA, Canaday DH et al (2012) Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. J Immunol 188(7):3116–3126

    PubMed  CAS  PubMed Central  Google Scholar 

  • Somsel RJ, Wandinger-Ness A (2000) Rab GTPases coordinate endocytosis. J Cell Sci 113(Pt 2):183–192

    Google Scholar 

  • Spiegelberg HL, Fishkin BG (1972) The catabolism of human G immunoglobulins of different heavy chain subclasses. 3. The catabolism of heavy chain disease proteins and of Fc fragments of myeloma proteins. Clin Exp Immunol 10(4):599–607

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spiekermann GM, Finn PW, Ward ES et al (2002) Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 196(3):303–310

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525

    PubMed  CAS  Google Scholar 

  • Tesar DB, Tiangco NE, Bjorkman PJ (2006) Ligand valency affects transcytosis, recycling and intracellular trafficking mediated by the neonatal Fc receptor. Traffic 7(9):1127–1142

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tzaban S, Massol RH, Yen E et al (2009) The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J Cell Biol 185(4):673–684

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vaccaro C, Bawdon R, Wanjie S et al (2006) Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc Natl Acad Sci USA 103(49):18709–18714

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vaccaro C, Zhou J, Ober RJ et al (2005) Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol 23(10):1283–1288

    PubMed  CAS  Google Scholar 

  • van Bilsen K, Bastiaans J, Dik WA et al (2010) The neonatal Fc receptor is expressed by human lymphocytes. J Transl Med 8(Suppl 1):P1

    PubMed Central  Google Scholar 

  • Vieira P, Rajewsky K (1988) The half-lives of serum immunoglobulins in adult mice. Eur J Immunol 18(2):313–316

    PubMed  CAS  Google Scholar 

  • Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84(5):548–558

    PubMed  CAS  Google Scholar 

  • Wani MA, Haynes LD, Kim J et al (2006) Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci USA 103(13):5084–5089

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ward ES, Martinez C, Vaccaro C et al (2005) From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling. Mol Biol Cell 16(4):2028–2038

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ward ES, Ober RJ (2009) Multitasking by exploitation of intracellular transport functions: the many faces of FcRn. Adv Immunol 103:77–115

    PubMed  CAS  Google Scholar 

  • Wartiovaara J, Ofverstedt LG, Khoshnoodi J et al (2004) Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 114(10):1475–1483

    PubMed  CAS  PubMed Central  Google Scholar 

  • Winters JL (2012) Plasma exchange: concepts, mechanisms, and an overview of the American Society for Apheresis guidelines. Hematol Am Soc Hematol Educ Program 2012:7–12

    Google Scholar 

  • Winters JL, Brown D, Hazard E et al (2011) Cost-minimization analysis of the direct costs of TPE and IVIg in the treatment of Guillain-Barre syndrome. BMC Health Serv Res 11:101

    PubMed  PubMed Central  Google Scholar 

  • Woof JM, Mestecky J (2005) Mucosal immunoglobulins. Immunol Rev 206:64–82

    PubMed  CAS  Google Scholar 

  • Ye L, Liu X, Rout SN et al (2008) The MHC class II-associated invariant chain interacts with the neonatal Fcγ receptor and modulates its trafficking to endosomal/lysosomal compartments. J Immunol 181(4):2572–2585

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yeung YA, Leabman MK, Marvin JS et al (2009) Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol 182(12):7663–7671

    PubMed  CAS  Google Scholar 

  • Yoshida M, Claypool SM, Wagner JS et al (2004) Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20(6):769–783

    PubMed  CAS  Google Scholar 

  • Yoshida M, Kobayashi K, Kuo TT et al (2006) Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J Clin Invest 116(8):2142–2151

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zalevsky J, Chamberlain AK, Horton HM et al (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28(2):157–159

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Pardridge WM (2001) Mediated efflux of IgG molecules from brain to blood across the blood-brain barrier. J Neuroimmunol 114(1–2):168–172

    PubMed  CAS  Google Scholar 

  • Zhu X, Meng G, Dickinson BL et al (2001) MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol 166(5):3266–3276

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sally Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Challa, D.K., Velmurugan, R., Ober, R.J., Sally Ward, E. (2014). FcRn: From Molecular Interactions to Regulation of IgG Pharmacokinetics and Functions. In: Daeron, M., Nimmerjahn, F. (eds) Fc Receptors. Current Topics in Microbiology and Immunology, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-319-07911-0_12

Download citation

Publish with us

Policies and ethics