Skip to main content

Hadean and Early Archaean High Grade Metamorphic Terrains

  • Chapter
  • First Online:
The Archaean: Geological and Geochemical Windows into the Early Earth

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 9))

Abstract

The oldest terrestrial minerals identified to date are 4,363 ± 20 Ma-old detrital zircons from Jack Hills, Western Australia (Valley et al. Geology 36:911–912, 2002; Nemchin et al. Earth Planet Sci Lett 244:218–233, 2006; Pidgeon and Nemchin, Precamb Res 150:201–220, 2006), predating the oldest known rocks – the ~4.0–4.03 Ga-old Acasta Gneiss (Bowring and Williams Contrib Mineral Petrol 134:3–16, 1999). The zircon data suggest development of low temperature hydrosphere predated the ~3.8 Ga Isua supracrustal belt of southwest Greenland by some 600 Ma. These greenstone belts contain a wealth of primary textural, mineralogical, geochemical and isotopic features allowing detailed insights into the nature of near Earth surface as well as deep seated plutonic processes. Early Archaean (>3.6 Ga) gneisses underlie approximately 10,000 km2 of Earth surface (Van Kranendonk et al., Paleo-archaean development of a continental nucleus: the east Pilbara terrain of the Pilbara craton. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology 15. Elsevier, Amsterdam, pp 307–337, 2007a, Terra Nova 19:1–38, 2007b). Terrains containing >4.0 Ga (Hadean) detrital and xenocrystic zircons include the Mt Narryer-Jack Hills Terrain (<4404 Ma), Acasta Gneiss (4.03–3.94 Ga) (west Slave Province, northwest Canada) and East Antarctic Gneisses (4.06–3.85 Ga).

Who knows for certain

Who shall here declare it

Whence was it born, whence came creation

The Gods are later than this world’s formation

Who then can know the origins of the world

(The Rig Veda, X.129).

Ancient Water / Marble Bar

No one

Was there to hear

The muffled roar of an earthquake,

Nor anyone who froze with fear

Of rising cliffs, eclipsed deep lakes

Sparkling comet-lit horizons

Brighter than one thousand suns

That blinded no one’s vision.

No one

Stood there in awe

Of an angry black coned volcano

Nor any pair of eyes that saw

Red streams eject from inferno

Plumes spewing out of Earth

And yellow sulphur clouds

Choking no one’s breath.

No one

Was numbed by thunder

As jet black storms gathered

Nor anyone was struck asunder

By lightning, when rocks shuttered

Engulfed by gushing torrents

That drowned smouldering ashes

Which no one was to lament.

In time

Once again an orange star rose

Above a sleeping archipelago

Sun rays breaking into blue depth ooze

Waves rippling sand’s ebb and flow

Receding to submerged twilight worlds

Where budding algal mats

Declare life

On the young Earth .

A poem by Andrew Glikson

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appel PWU, Fedo CM, Moorbath S, Myers JS (1998) Recognisable primary volcanic and sedimentary features in a low-strain domain of the highly deformed, oldest known (ca. 3.7–3.8 Gyr) greenstone belt, Isua, Greenland. Terra Nova 10:57–62

    Article  Google Scholar 

  • Baadsgaard H, Nutman AP, Bridgwater D, McGregor VR, Rosing M, Allaart JH (1984) The zircon geochronology of the Akilia association and the Isua supracrustal belt, West Greenland. Earth Planet Sci Lett 68:221–228

    Article  Google Scholar 

  • Bell EA, Harrison TM, McCulloch MT, Young ED (2011) Early Archean crustal evolution of the Jack Hills Zircon source terrain inferred from Lu–Hf, 207Pb/206Pb, and δ18O systematics of Jack Hills zircons. Geochim Cosmochim Acta 17:4816–4829

    Article  Google Scholar 

  • Bleeker W, Stern R (1997) The Acasta gneisses: an imperfect sample of Earth’s oldest crust. In: Cook F, Erdmer P (eds) Slave-Northern Cordillera Lithospheric Evolution (SNORCLE) transect and Cordilleran tectonics workshop meeting. Lithosphere report 56, pp 32–35

    Google Scholar 

  • Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett 222:43–60

    Article  Google Scholar 

  • Bowring SA, Housh TB (1995) The Earth’s early evolution. Science 269:1535–1540

    Article  Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from NW Canada. Contrib Mineral Petrol 134:3–16

    Google Scholar 

  • Cavosie AJ, Wilde SA, Liu D, Weiblen PW, Valley JW (2004) Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Res 135:251–279

    Article  Google Scholar 

  • Cavosie AJ, Valley JW, Wilde SA (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archaean. Earth Planet Sci Lett 235:663–681

    Article  Google Scholar 

  • Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and the development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci Rev 69:249–279

    Article  Google Scholar 

  • Chamberlain KR, Frost CD, Frost BR (2003) Early Archean to Mesoproterozoic evolution of the Wyoming Province: Archean origins to modern lithospheric architecture. Can J Earth Sci 40:1357–1374

    Article  Google Scholar 

  • Crowley JL, Myers JS, Sylvester PJ, Cox RA (2005) Detrital zircons from the Jack Hills and Mount Narryer, Western Australia: evidence for diverse >4.0 Ga source rocks. J Geol 113:239–263

    Article  Google Scholar 

  • Dalziel IWD (1991) Pacific margins of Laurentia and East Antarctica–Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19:598–601

    Article  Google Scholar 

  • Dymek RF, Klein C (1988) Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt, West Greenland. Precambrian Res 37:247–302

    Article  Google Scholar 

  • Fitzsimons ICW (2000) Grenville-age basement provinces in East Antarctica: evidence for three separate collisional orogens. Geology 28:879–882

    Article  Google Scholar 

  • Frost CD, Frost BR (1993) The Archean history of the Wyoming province. In: Snoke AW, Steidtmann JR, Roberts SM (eds) Geology of Wyoming. Geological Survey of Wyoming Memoir, 5. Geological Survey of Wyoming Memoir, Laramie, pp 58–77

    Google Scholar 

  • Frost BR, Frost CD, Cornia ME, Chamberlain KR, Kirkwood R (2006) The Teton-Wind River domain: a 2.68–2.67 Ga active margin in the western Wyoming Province. Can J Earth Sci 43:1489–1510

    Article  Google Scholar 

  • Froude CF, Ireland TR, Kinny PD, Williams IS, Compston W, Williams IR, Myers JS (1983) Ion-microprobe identification of 4100–4200 Myr old terrestrial zircons. Nature 304:616–618

    Article  Google Scholar 

  • Fryer BJ (1977) Rare earth evidence in iron-formations for changing Precambrian oxidation states. Geochim Cosmochim Acta 41:361–367

    Article  Google Scholar 

  • Fryer BJ, Fyfe WS, Kerrich R (1979) Archaean volcanogenic oceans. Chem Geol 24:25–33

    Article  Google Scholar 

  • Gorman AR, Clowes RM, Ellis RM, Henstock TJ, Spence GD, Keller GR, Levander A, Snelson CM, Burianyk MJA, Kanasewich ER, Asuden I, Hajnal Z, Miller KC (2002) Deep Probe: imaging the roots of western North America. Can J Earth Sci 39:375–398

    Article  Google Scholar 

  • Graf JL (1978) Rare earth elements, iron formations and sea water. Geochim Cosmochim Acta 42:1845–1850

    Article  Google Scholar 

  • Harley SL (2003) Archaean to Pan-African crustal development and assembly of East Antarctica: metamorphic characteristics and tectonic implications. In: Yoshida M, Windley BF (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. Geological Society of London special publications 206. Geological Society, London, pp 203–230

    Google Scholar 

  • Harley SL, Kelly NM (2007) Ancient Antarctica: the Archaean of the East Antarctic shield. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology 15. Elsevier, pp 149–186

    Google Scholar 

  • Harrison TM, Blichert-Toft J, Müller W, Albarede F, Holden P, Mojzsis SJ (2005) Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310:1947–1950

    Article  Google Scholar 

  • Hodges KV, Bowring SA, Coleman DS, Hawkins DP, Davidek KL (1995) Multi-stage thermal history of the ca. 4.0 Ga Acasta gneisses. In: American Geophysical Union fall meeting. p F708

    Google Scholar 

  • Holland HD (2005) Sedimentary mineral deposits and the evolution of Earth’s near surface environments. Econ Geol 100:1489–1500

    Article  Google Scholar 

  • Iizuka T, Komiya T, Ueno Y, Katayama I, Uehara Y, Maruyama S, Hirata T, Johnson SP, Dunkley D (2007) Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: new constraints on its tectono-thermal history. Precambrian Res 153:179–208

    Article  Google Scholar 

  • Jacobsen SB, Pimentel-Close M (1988) A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: the source of REE and F in Archaean oceans. Earth Planet Sci Lett 87:29–44

    Article  Google Scholar 

  • Jenner FJ, Bennett VC, Nutman AP (2006) 3.8 Ga arc-related basalts from Southwest Greenland. Geochim Cosmochim Acta 70:A291

    Article  Google Scholar 

  • Kamber BS, Collerson KD, Moorbath S, Whitehouse MJ (2003) Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. Contrib Mineral Petrol 145:25–46

    Google Scholar 

  • Kinny PD, Wijbrans JR, Froude DO, Williams IS, Compston W (1990) Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. Aust J Earth Sci 37:51–69

    Article  Google Scholar 

  • Komiya T, Maruyama S, Masuda T, Nohda S, Hayashi M, Okamoto K (1999) Plate tectonics at 3.8–3.7 Ga: field evidence from the Isua accretionary complex, southern West Greenland. J Geol 107:515–554

    Article  Google Scholar 

  • Konhausser K, Hamada T, Raiswell R, Morris R, Ferris F, Southam G, Canfield D (2002) Could bacteria have formed the Precambrian banded iron-formations? Geology 30:1079–1082

    Article  Google Scholar 

  • Kruckenberg SC, Chamberlain KR, Frost CD, Frost BR (2001) One billion years of Archean crustal evolution: Black Rock Mountain, northeastern Granite Mountains, Wyoming. Geol Soc Am Abstr Programs 33(6):A-401

    Google Scholar 

  • LeCheminant AN, Heaman LM (1989) Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth Planet Sci Lett 96:38–48

    Article  Google Scholar 

  • Leclair AD, Boily M, Berclaz A, Labbé JY, Lacoste P, Simard M, Maurice C (2006) 1.2 billion years of Archean evolution in the northeastern Superior Province. Geol Assoc Can Abstr 31:85

    Google Scholar 

  • Mogk DW, Mueller PA, Wooden J (1992) The significance of Archean terrain boundaries: evidence from the northern Wyoming province. Precambrian Res 55:155–168

    Article  Google Scholar 

  • Mogk DW, Mueller PA, Wooden JL (2004) Tectonic implications of late Archeanearly Proterozoic supracrustal rocks in the Gravelly Range, SW Montana. In: Geological Society of America 2004 Annual Meeting Abstract with Programs 36(5). p 507

    Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–180

    Article  Google Scholar 

  • Moorbath S, O’Nions RK, Pankhurst RJ (1973) Early Archaean age for the Isua Iron Formation, West Greenland. Nature 245:138–139

    Article  Google Scholar 

  • Mueller PA, Frost CD (2006) The Wyoming province: a distinctive Archean craton in Laurentian North America. Can J Earth Sci 43:1391–1397

    Article  Google Scholar 

  • Mueller PA, Heatherington AL, Kelly DM, Wooden JL, Mogk DW (2002) Paleoproterozoic crust within the Great Falls tectonic zone; implications for the assembly of southern Laurentia. Geology 30:127–130

    Article  Google Scholar 

  • Myers JS (1988) Early Archaean Narryer Gneiss Complex, Yilgarn Craton, Western Australia. Precambrian Res 38:297–307

    Article  Google Scholar 

  • Nemchin AA, Pidgeon RT, Whitehouse MJ (2006) Re-evaluation of the origin and evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth Planet Sci Lett 244:218–233

    Article  Google Scholar 

  • Nutman AP, Bennett V, Kinny PD, Price R (1993) Large-scale crustal structure of the northwestern Yilgarn Craton, Western Australia: evidence from Nd isotopic data and zircon geochronology. Tectonics 12:971–981

    Article  Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL, Rosing MT (1997) ∼3710 and 3790 Ma volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications. Chem Geol 141:271–287

    Article  Google Scholar 

  • Nutman AP, Friend CRL, Horie K, Hidaka H (2007) The Itsaq gneiss complex of southern west Greenland and the construction of Archaean crust at convergent plate boundaries. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, vol 15, Developments in Precambrian geology. Elsevier, Amsterdam, pp 187–218

    Chapter  Google Scholar 

  • Nutman AP, Clark Friend RL, Bennett VC, Wright D, Norman MD (2010) ≥3700 Ma pre-metamorphic dolomite formed by microbial mediation in the Isua supracrustal belt (W. Greenland): simple evidence for early life? Precambrian Res 183:725–737

    Article  Google Scholar 

  • Olivarez AM, Owen RM (1991) The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans. Chem Geol 92:317–328

    Article  Google Scholar 

  • O’Neil J, Maurice C, Stevenson RK, Larocque J, Cloquet C, David J, Francis D (2007) The geology of the 3.8 Ga Nuvvuagittuq (Porpoise Cove) Greenstone Belt, Northeastern Superior Province, Canada. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, vol 15, Developments in Precambrian geology. Elsevier, Amsterdam, pp 219–250

    Chapter  Google Scholar 

  • O’Neill JM, Lopez DA (1985) Character and regional significance of Great Falls Tectonic Zone, east-central Idaho and west-central Montana. Am Assoc Petrol Geol Bull 69:437–447

    Google Scholar 

  • Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the Early Archaean. Geochim Cosmochim Acta 65:4215–4229

    Article  Google Scholar 

  • Percival J, Card KD (1994) Geology, Lac Minto – Rivière aux Feuilles. Geological Survey of Canada Map 1854A (1:500,000)

    Google Scholar 

  • Percival JA, Mortensen JK, Stern RA, Card KD, Bégin NJ (1992) Giant granulite terrains of northeastern Superior Province: the Ashuanipi complex and Minto block. Can J Earth Sci 29:2287–2308

    Article  Google Scholar 

  • Pidgeon RT, Nemchin AA (2006) High abundance of early Archaean grains and the age distribution of detrital zircons in a sillimanite-bearing quartzite from Mt Narryer, Western Australia. Precambrian Res 150:201–220

    Article  Google Scholar 

  • Polat A, Hofmann AW, Rosing MT (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol 184:231–254

    Article  Google Scholar 

  • Ringwood AE (1986) Origin of the Earth and Moon. Nature 322:323–328

    Article  Google Scholar 

  • Rosen OM, Turkina OM (2007) The oldest rock assemblage of the Siberian Craton. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, vol 15, Developments in Precambrian geology. Elsevier, Amsterdam, pp 793–838

    Chapter  Google Scholar 

  • Ryder G (1990) Lunar samples, lunar accretion and the early bombardment of the Moon. EOS Trans Am Geophys Union 71:313–322

    Article  Google Scholar 

  • Ryder G (1991) Accretion and bombardment in the Earth–Moon system: the lunar record. Lunar Planet Sci Inst Contrib 746:42–43

    Google Scholar 

  • Ryder G (1997) Coincidence in the time of the Imbrium Basin impact and Apollo 15 Kreep volcanic series: impact induced melting? Lunar Planet Sci Inst Contrib 790:61–62

    Google Scholar 

  • Sano Y, Terada K, Hidaka H, Yokoyama K, Nutman AP (1999) Palaeoproterozoic thermal events recorded in the ~4.0 Ga Acasta gneiss, Canada: evidence from SHRIMP U-Pb dating of apatite and zircon. Geochim Cosmochim Acta 63:899–905

    Article  Google Scholar 

  • Smith PE, Evensen NM, York D, Moorbath S (2005) Oldest reliable terrestrial 40Ar-39Ar age from pyrite crystals at Isua, west Greenland. Geophys Res Lett 32:1–4

    Google Scholar 

  • Stevenson RK, Patchett PJ (1990) Implications for the evolution of continental crust from Hf isotope systematics of Archean detrital zircons. Geochim Cosmochim Acta 54:1683–1697

    Article  Google Scholar 

  • Stevenson RK, David J, Parent M (2006) Crustal evolution in the western Minto Block, northern Superior Province, Canada. Precambrian Res 145:229–242

    Article  Google Scholar 

  • Tingey RJ (1991) The regional geology of Archaean and Proterozoic rocks in Antarctica. In: Tingey RJ (ed) The geology of Antarctica. Oxford University Press, Oxford, pp 1–73

    Google Scholar 

  • Valley JW (2005) A cool early Earth. Sci Am 293(4):58–66

    Article  Google Scholar 

  • Valley JW (2008) The origin of habitats. Geology 36:911–912

    Article  Google Scholar 

  • Valley JW, Cavosie AJ, Fu B, Peck WH, Wilde SA (2006) Comment on Heterogeneous hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 312:57–77

    Article  Google Scholar 

  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite at low temperatures. Nature 377:220–222

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Williams IR, Myers JS (1987) Archaean geology of the Mount Narryer region, Western Australia. Western Australia Geological Survey, Report 22, 32 pp

    Google Scholar 

  • Wooden JL, Mueller PA (1988) Pb, Sr, and Nd isotopic compositions of a suite of Late Archean igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution. Earth Planet Sci Lett 87:59–72

    Article  Google Scholar 

  • Wyche S, Nelson DR, Riganti A (2004) 4350–3130 Ma detrital zircons in the Southern Cross granite-greenstone terrain, Western Australia: implications for the early evolution of the Yilgarn Craton. Aust J Earth Sci 51:31–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glikson, A.Y. (2014). Hadean and Early Archaean High Grade Metamorphic Terrains. In: The Archaean: Geological and Geochemical Windows into the Early Earth. Modern Approaches in Solid Earth Sciences, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-07908-0_2

Download citation

Publish with us

Policies and ethics