Skip to main content

Uniformitarian Theories and Catastrophic Events Through Time

  • Chapter
  • First Online:
  • 1196 Accesses

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 9))

Abstract

Uniformitarian models for the early Earth take little or no account of repeated impacts of asteroid clusters and their effects on crust and mantle. However a large body of evidence exists for multiple impacts by bodies on the scale of tens of kilometer during ~3.47–2.48 Ga (Lowe et al. Astrobiology 3:7–48, 2003; Lowe and Byerly, Did the LHB end not with a bang but with a whimper? 41st Lunar Planet Science conference 2563pdf, 2010; Glikson and Vickers. Aust J Earth Sci 57:79–95, 2010; Glikson The asteroid impact connection of planetary evolution. Springer-Briefs, Dordrecht, 150 pp, 2013), likely accounting at least in part for mafic-ultramafic volcanism produced by mantle rebound and melting events, consistent with original suggestion by Green (Earth Planet Sci Lett 15:263–270, 1972; Green DH Petrogenesis of Archaean ultramafic magmas and implications for Archaean tectonics. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 469–489, 1981). Further, the juxtaposition of at least four impact ejecta units with the fundamental unconformity between granite-greenstone terrains and semi-continental deposits in both the Barberton Greenstone Belt and the Pilbara Craton about ~3.26–3.227 Ga constitutes a primary example for the tectonic and magmatic effects of asteroid impact clusters in the Archaean, supporting Lowe and Byerly’s (Did the LHB end not with a bang but with a whimper? 41st Lunar Planet Science conference 2563pdf, 2010) suggested extension of the late heavy bombardment (LHB).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arndt N, Albarede F, Nisbet EG (1997) Mafic and ultramafic magmatism. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, Oxford, pp 231–254

    Google Scholar 

  • Arndt N, Bruzak G, Reischmann T (2001) The oldest continental and oceanic plateaus: geochemistry of basalts and komatiites of the Pilbara Craton Australia. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America (GSA) special publication 352. Geological Society of America, Boulder, pp 359–387

    Google Scholar 

  • Arth JG (1976) Behavior of trace elements during magmatic processes: a summary of theoretical models and their application. J Res U S Geol Surv 4:41–47

    Google Scholar 

  • Arth JG, Hanson GN (1975) Geochemistry and origin of the Early Precambrian crust of North-eastern Minnesota. Geochim Cosmochim Acta 39:325–362

    Article  Google Scholar 

  • Barley ME (1993) Volcanic, sedimentary, and tectono-stratigraphic environments of the ~3.46 Warrawoona Megasequence: a review. Precambrian Res 60:47–67

    Article  Google Scholar 

  • Beresford S, Tyler I, Smithies H (eds) (2013) Evolving early Earth. Precambrian Res 229:1–202

    Google Scholar 

  • Bickle MJ, Bettenay LF, Barley ME, Chapman HJ, Groves DI, Campbell IH, de Laeter JR (1983) A 3500 Ma plutonic and volcanic calc-alkaline province in the Archaean East Pilbara Block. Contrib Mineral Petrol 84:25–35

    Google Scholar 

  • Buick R, Thornett JR, McNaughton NJ, Smith JB, Barley ME, Savage M (1995) Record of emergent continental crust ~3.5 billion years ago in the Pilbara Craton of Australia. Nature 375:574–577

    Article  Google Scholar 

  • Bullard EC (1964) Continental drift. Q J Geol Soc Lond 120:1–19

    Article  Google Scholar 

  • Burke K (2011) Plate tectonics, the Wilson cycle, and Mantle plumes: geodynamics from the top. Ann Rev Earth Planet Sci 39:1–29

    Article  Google Scholar 

  • Burke K, Dewey JF, Kidd WS (1976) Dominance of horizontal movements, arcs and microcontinental collisions during the later premobile regime. In: Windley BF (ed) Early history of the Earth. Wiley, London, pp 113–130

    Google Scholar 

  • Condie KC (2001) Mantle plumes and their record in earth history. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Davies GF (1995) Punctuated tectonic evolution of the Earth. Earth Planet Sci Lett 136:363–380

    Article  Google Scholar 

  • de Wit MJ (1998) On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Res 91:181–226

    Article  Google Scholar 

  • Ernst RE, Buchan KL, Prokoph A (2004) Large Igneous Province record through time. In: Eriksson PG et al (eds) The Precambrian Earth: tempos and events in Precambrian time. Develop Precamb Geol 12. Elsevier, Amsterdam, pp 173–180

    Google Scholar 

  • French BM (1998) Traces of catastrophe – a handbook of shock metamorphic effects in terrestrial meteorite impact structures. Lunar Planet Sci Inst Contrib 954:120

    Google Scholar 

  • Glikson AY (1971) Primitive Archaean element distribution patterns: chemical evidence and tectonic significance. Earth Sci Planet Lett 12:309–320

    Article  Google Scholar 

  • Glikson AY (1972a) Petrology and geochemistry of metamorphosed Archaean ophiolites, Kalgoorlie-Coolgardie, Western Australia. Aust Bur Miner Resour Bull 125:121–189

    Google Scholar 

  • Glikson AY (1972b) Early Precambrian evidence of a primitive ocean crust and island arc nuclei of sodic granite. Bull Geol Soc Am 83:3323–3344

    Article  Google Scholar 

  • Glikson AY (1976a) Trace element geochemistry and origin of early Precambrian acid igneous series, Barberton Mountain Land, Transvaal. Geochim Cosmochim Acta 40:1261–1280

    Article  Google Scholar 

  • Glikson AY (1976b) Stratigraphy and evolution of primary and secondary greenstones: significance of data from Shields of the southern hemisphere. In: Windley BF (ed) The early history of the earth. Wiley, London, pp 257–277

    Google Scholar 

  • Glikson AY (1976c) Archaean to early Proterozoic shield elements: relevance of plate tectonics. Geol Assoc Can Spec Publ 14:489–516

    Google Scholar 

  • Glikson AY (1979a) Early Precambrian tonalite-trondhjemite sialic nuclei. Earth Sci Rev 15:1–73

    Article  Google Scholar 

  • Glikson AY (1979b) On the foundation of the Sargur Group. J Geol Soc India 20:248–255

    Google Scholar 

  • Glikson AY (1980) Uniformitarian assumptions, plate tectonics and the Precambrian Earth. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 91–104

    Google Scholar 

  • Glikson AY (2005) Geochemical and isotopic signatures of Archaean to early Proterozoic extraterrestrial impact ejecta/fallout units. Aust J Earth Sci 52:785–799

    Article  Google Scholar 

  • Glikson AY (2008) Field evidence of Eros-scale asteroids and impact-forcing of Precambrian geodynamic episodes, Kaapvaal (South Africa) and Pilbara (Western Australia) Cratons. Earth Planet Sci Lett 267:558–570

    Article  Google Scholar 

  • Glikson AY (2013) The asteroid impact connection of planetary evolution. Springer-Briefs, Dordrecht, 150 pp

    Book  Google Scholar 

  • Glikson AY, Hickman AH (1981) Geochemical stratigraphy of Archaean mafic-ultramafic volcanic successions, eastern Pilbara Block, Western Australia. In: Glover JE, Groves DI (eds) Archaean geology. Geological Society of Australia special publications 7. Geological Society of Australia, Sydney, pp 287–300

    Google Scholar 

  • Glikson AY, Sheraton JW (1972) Early Precambrian trondhjemitic suites in Western Australia and northwestern Scotland and the geochemical evolution of shields. Earth Planet Sci Lett 17:227–242

    Article  Google Scholar 

  • Glikson AY, Vickers J (2006) The 3.26–3.24 Ga Barberton asteroid impact cluster: tests of tectonic and magmatic consequences, Pilbara Craton, Western Australia. Earth Planet Sci Lett 241:11–20

    Article  Google Scholar 

  • Glikson AY, Vickers J (2010) Asteroid impact connections of crustal evolution. Aust J Earth Sci 57:79–95

    Article  Google Scholar 

  • Glikson AY, Allen C, Vickers J (2004) Multiple 3.47-Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Earth Planet Sci Lett 221:383–396

    Article  Google Scholar 

  • Green DH (1972) Archaean greenstone belts may include equivalents of lunar maria? Earth Planet Sci Lett 15:263–270

    Article  Google Scholar 

  • Green DH (1981) Petrogenesis of Archaean ultramafic magmas and implications for Archaean tectonics. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 469–489

    Google Scholar 

  • Green DH, Ringwood AE (1967) An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim Cosmochim Acta 31:767–833

    Article  Google Scholar 

  • Green TH, Ringwood AE (1977) Genesis of the calc-alkaline igneous rock suite. Contrib Mineral Petrol 18:105–162

    Google Scholar 

  • Hamilton WB (2003) An alternative Earth. Geol Soc Am Today 13:412

    Google Scholar 

  • Hanson GN (1975) Geochemistry and origin of the early Precambrian crust of northeastern Minnesota. Geochim Cosmochim Acta 39:325–362

    Article  Google Scholar 

  • Hickman AH (2012) Review of the Pilbara Craton and Fortescue Basin, Western Australia: crustal evolution providing environments for early life. Island Arc 21:1–31

    Article  Google Scholar 

  • Hietanen A (1975a) Generation of potassium-poor magmas in the northern Sierra Nevada and the Sveconfennian of Finland. U S Geol Surv J Res 3:631–645

    Google Scholar 

  • Hietanen A (1975b) Generation of K-poor magma in the northern Sierra Nevada and the Svecofennian of Finland. J Res U S Geol Surv 3:631–646

    Google Scholar 

  • Holmes A (1965) Principles of physical geology. Ronald Press, New York, 1288 pp

    Google Scholar 

  • Jahn BM, Glikson AY, Peucat JJ, Hickman AH (1981) REE geochemistry and geochronology of Archaean silicic volcanics and granitoids from the Pilbara Block, Western Australia. Geochim Cosmochim Acta 45:1633–1652

    Article  Google Scholar 

  • Jenner FJ, Bennett VC, Nutman AP (2006) 3.8 Ga arc-related basalts from Southwest Greenland. Geochim Cosmochim Acta 70:A291

    Article  Google Scholar 

  • Jenner FE, Bennett VC, Yaxley G, Friend CRL, Nebel O (2013) Eoarchean within-plate basalts from southwest Greenland. Geology 41:327–330

    Article  Google Scholar 

  • Katz MB (1972) Paired metamorphic belts of the Gondwana Precambrian and plate tectonics. Nature 239:271–273

    Article  Google Scholar 

  • Kerrich R, Polat A (2006) Archean greenstone-tonalite duality: thermochemical mantle convectionmodels or plate tectonics in the early Earth global dynamics? Tectonophysics 415:141–165

    Article  Google Scholar 

  • Kitajima K, Maruyama S, Utsonomita S, Liou JG (2001) Seafloor hydrothermal alteration at an Archaean mid-ocean ridge. J Metamorph Geol 19:581–597

    Article  Google Scholar 

  • Krapez B, Barley MB (2008) Late Archaean synorogenic basins of the Eastern Goldfields Superterrain, Yilgarn Craton, Western Australia Part III. Signatures of tectonic escape in an arc-continent collision zone. Precambrian Res 161:183–199

    Article  Google Scholar 

  • Krapez B, Eisenlohr B (1998) Tectonic settings of Archaean (3325–2775 Ma) crustal-supracrustal belts in the West Pilbara Block. Precambrian Res 88:173–205

    Article  Google Scholar 

  • Kroner A (1981) Precambrian plate tectonics. In: Kroner A (ed) Precambmrian Plate Tectonics. Elsevier, Amsterdam, pp 57–90

    Google Scholar 

  • Kroner A (1991) Tectonic evolution in the Archaean and Proterozoic. Tectonophysics 187:393–410

    Article  Google Scholar 

  • Kröner A, Hegner E, Wendt JI, Byerly GR (1996) The oldest part of the Barberton granitoid-greenstone terrain, South Africa: evidence for crust formation between 3.5 and 3.7 Ga. Precambrian Res 78:105–124

    Article  Google Scholar 

  • Lowe DR, Byerly GR (2010) Did the LHB end not with a bang but with a whimper? 41st Lunar Planet Science Conference 2563pdf

    Google Scholar 

  • Lowe DR, Byerly GR, Kyte FT, Shukolyukov A, Asaro F, Krull A (2003a) Characteristics, origin, and implications of Archaean impact-produced spherule beds, 3.47–3.22 Ga, in the Barberton Greenstone Belt, South Africa: keys to the role of large impacts on the evolution of the early Earth. Astrobiology 3:7–48

    Article  Google Scholar 

  • Lowe DR, Byerly GR, Kyte FT, Shukolyukov A, Asaro F, Krull A (2003b) Spherule beds 3.47–3.24 billion years old in the Barberton Greenstone Belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution. Astrobiology 3:7–48

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Mitroff II (1974) The subjective side of science. Elsevier, Amsterdam, 329 pp

    Google Scholar 

  • Mohan MR et al (2014) SHRIMP zircon and titanite U-Pb ages, Lu-Hf isotope signatures and geochemical constraints for ∼2.56 Ga granitic magmatism in western Dharwar Craton, southern India: evidence for short-lived Neoarchean episodic crustal growth. Precambrian Res Online 6 January 2014

    Google Scholar 

  • Moorbath S (1977) Ages, isotopes and the evolution of the Precambrian continental crust. Chem Geol 20:151–187

    Article  Google Scholar 

  • Nelson DR (1999) Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1998. Western Australia Geological Survey Record 1999/2

    Google Scholar 

  • Nelson DR (2008) Geochronology of the Archean of Australia. Aust J Earth Sci 55:779–793, 55

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL, Pearson NJ, Jackson SE, Belousova EA, Alard O, Saeed A (2008) Taking the pulse of the Earth: linking crustal and mantle events. Aust J Earth Sci 55:983–996

    Article  Google Scholar 

  • Pearce JA, Cann JR (1971) Ophiolite origin investigated through discriminant analysis using Ti, Zr and Y. Earth Planet Sci Lett 12:339–349

    Article  Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett 19:290–300

    Article  Google Scholar 

  • Pearce JA, Gorman BE, Birkett TC (1977a) The relationships between major element geochemistry and tectonic environments of basic and intermediate volcanic rocks. Earth Planet Sci Lett 36:121–132

    Article  Google Scholar 

  • Pearce TH, Gorman BE, Birkett TC (1977b) The relations between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth Planet Sci Lett 36:121–132

    Article  Google Scholar 

  • Percival JA, Sanborn-Barrie M, Skulski T, Stott GM, Helmstaedt H, White DJ (2006) Tectonic evolution of the western Superior Province from NATMAP and Lithoprobe studies. Can J Earth Sci 43:1085–1117

    Article  Google Scholar 

  • Pidgeon RT, Wingate TD, Bodorkos S, Nelson DR (2010) The age distribution of detrital zircons in quartzites from the Toodyay-Lake Grace domains, Western Australia: implications for the early evolution of the Yilgarn. Am J Sci 310:1115–1135

    Article  Google Scholar 

  • Pirajno F (2000) Ore deposits and mantle plumes. Kluwer Academic Publishers, Dordrecht, 556 pp

    Book  Google Scholar 

  • Pirajno F (2007a) Mantle plumes, associated intraplate tectono-magmatic processes and ore systems. Episodes 30:6–19

    Google Scholar 

  • Pirajno F (2007b) Ancient to modern Earth: the role of mantle plumes in the making of continental crust. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology 15. Elsevier, Amsterdam, pp 1037–1064

    Google Scholar 

  • Polat A (2013) Geochemical variations in Archean volcanic rocks, southwestern Greenland: traces of diverse tectonic settings in the early Earth. Geology 41:379–380

    Article  Google Scholar 

  • Robb LJ, Anhauesser CR (1983) Chemical and petrogenetic characteristics of Archean tonalite-trondhjemite gneiss plutons in the Barberton Mountain Land. In: Anhauesser CR (ed) Contributions to the geology of the Barberton Mountain Land. Geological Society of South Africa special publication 9. Geological Society of South Africa, Johannesburg, pp 103–116

    Google Scholar 

  • Shoemaker EM, Shoemaker CS (1996) The Proterozoic impact record of Australia. Aust Geol Surv Org J Aust Geol Geophys 16:379–398

    Google Scholar 

  • Smithies RH (2000) The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Article  Google Scholar 

  • Smithies RH, Champion DC (1999) Late Archaean felsic alkaline igneous rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: a result of lower crustal delamination? J Geol Soc 156:561–576

    Article  Google Scholar 

  • Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth’s early Archaean continental crust. Precambrian Res 127:89–101

    Article  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ, Hickman AH (2007a) Geochemistry of volcanic rocks of the northern Pilbara Craton, Western Australia. Geological Survey of Western Australia Report 104

    Google Scholar 

  • Swager CP, Goleby BR, Drummon BJ, Rattenbury MS, Williams PR (1997) Crustal structure of granite-greenstone terrains in the Eastern Goldfields, Yilgarn Craton, as revealed by seismic reflection profiling. Precambrian Res 83:43–56

    Article  Google Scholar 

  • Tarney J, Windley BF (1977) Chemistry, thermal gradients and evolution of the lower continental crust. J Geol Soc Lond 134:153–172

    Article  Google Scholar 

  • Tarney J, Dalziel IWD, DeWit MJ (1976) Marginal basin ‘Rocas Verdes’ complex from south Chile: a model for Archaean greenstone belt formation. In: Windley BF (ed) Early history of the Earth. Wiley, London, pp 131–146

    Google Scholar 

  • Terabayashi M, Masuda Y, Ozawa H (2003) Archaean ocean floor metamorphism in the North Pole area, Pilbara Craton, Western Australia. Precambrian Res 127:167–180

    Article  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007b) Secular tectonic evolution of Archaean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38

    Article  Google Scholar 

  • Walker W (1976) Eras, mobile belts and metallogeny. Geol Assoc Can Spec Publ 14:517–558

    Google Scholar 

  • Windley BF, Smith JV (1976) Archaean high-grade complexes and modern continental margins. Nature 260:671–675

    Article  Google Scholar 

  • Zegers TE, Nelson DR, Wijbrans JR, White SH (2001) SHRIMP U–Pb dating of an Archaean core complex formation and pancratonic strike-slip deformation in the East Pilbara Granite–Greenstone Terrain. Tectonics 20:883–908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glikson, A.Y. (2014). Uniformitarian Theories and Catastrophic Events Through Time. In: The Archaean: Geological and Geochemical Windows into the Early Earth. Modern Approaches in Solid Earth Sciences, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-07908-0_12

Download citation

Publish with us

Policies and ethics