Abstract
In this paper we describe a novel methodology for texture-based breast cancer prediction in full-field digital mammograms. Our method employs the Dual-Tree Complex Wavelet Transform for texture-based image analysis and representation, and Random Forest classification for discriminative learning and breast cancer prediction. We assess the ability of our method to identify women with breast cancer using raw images, processed images and VolparaTM density maps of two case-control datasets. We also investigate whether different regions of the breast exhibit different predictive power with respect to breast cancer. The best results are obtained using the processed images of a case-control dataset consisting of 100 cancers and 300 controls, where we achieve an area under the ROC curve of 0.74 for a texture model based on the whole breast and an equal area under the ROC curve when the most predictive regional model is used.
Keywords
- Breast cancer
- texture
- wavelets
- Random Forest
- risk
- mammogram
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Evans, D.G.R., Warwick, J., Astley, S.M., Stavrinos, P., Sahin, S., Ingham, S., McBurney, H., Eckersley, B., Harvie, M., Wilson, M., Beetles, U., Warren, R., Hufton, A., Sergeant, J.C., Newman, W.G., Buchan, I., Cuzick, J., Howell, A.: Assessing Individual Breast Cancer Risk within the U.K. National Health Service Breast Screening Program: A New Paradigm for Cancer Prevention. Cancer Prevention Research 5(7), 943–951 (2012)
Nielsen, M., Karemore, G., Loog, M., Raundahl, J., Karssemeijer, N., Otten, J.D.M., Karsdal, M.A., Vachon, C.M., Christiansen, C.: A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer. Cancer Epidemiology 35, 381–387 (2011)
Manduca, A., Carston, M.J., Heine, J.J., Scott, C.G., Pankratz, V.S., Brandt, K.R., Sellers, T.A., Vachon, C.M., Cerhan, J.R.: Texture Features from Mammographic Images and Risk of Breast Cancer. Cancer Epidemiology Biomarkers and Prevention 18(3), 837–845 (2009)
Häberle, L., Wagner, F., Fasching, P.A., Jud, S.M., Heusinger, K., Loehberg, C.R., Hein, A., Bayer, C.M., Hack, C.C., Lux, M.P., Binder, K., Elter, M., Münzenmayer, C., Schultz-Wendtland, R., Adamietz, B.R., Uder, M., Beckmann, M.W., Wittenberg, T.: Characterizing mammographic images by using generic texture features. Breast Cancer Research 14(2), 1–12 (2012)
Highnam, R., Brady, S.M., Yaffe, M.J., Karssemeijer, N., Harvey, J.: Robust Breast Composition Measurement - VolparaTM. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds.) IWDM 2010. LNCS, vol. 6136, pp. 342–349. Springer, Heidelberg (2010)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall (2001)
Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The Dual-Tree Complex Wavelet Transform. IEEE Signal Processing Magazine, 123–151 (2005)
Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Brandt, S.S., Karemore, G., Karssemeijer, N., Nielsen, M.: An anatomically oriented breast coordinate system for mammogram analysis. IEEE Transactions on Medical Imaging 30(10), 1841–1851 (2001)
Chen, X., Moschidis, E., Taylor, C., Astley, S.: A Novel Framework for Fat, Glandular Tissue, Pectoral Muscle and Nipple Segmentation in Full-Field Digital Mammograms. In: Fujita, H., Hara, T., Muramatsu, C. (eds.) IWDM 2014. LNCS, vol. 8539, pp. 201–208. Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Moschidis, E., Chen, X., Taylor, C., Astley, S.M. (2014). Texture-Based Breast Cancer Prediction in Full-Field Digital Mammograms Using the Dual-Tree Complex Wavelet Transform and Random Forest Classification. In: Fujita, H., Hara, T., Muramatsu, C. (eds) Breast Imaging. IWDM 2014. Lecture Notes in Computer Science, vol 8539. Springer, Cham. https://doi.org/10.1007/978-3-319-07887-8_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-07887-8_30
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07886-1
Online ISBN: 978-3-319-07887-8
eBook Packages: Computer ScienceComputer Science (R0)