Advertisement

Virtual Clinical Trials for the Assessment of Novel Breast Screening Modalities

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8539)

Abstract

Validation of any imaging system is challenging due to the huge number of system parameters that should be evaluated. The ultimate metric of system performance is a clinical trial. However, the use of clinical trials is limited by cost and duration. We are strong proponents of a preclinical alternative, in the form of Virtual Clinical Trials (VCT), which model human anatomy, image acquisition, display and processing, and image analysis and interpretation. A complete VCT pipeline was envisioned by combining the breast anatomy and image acquisition simulation pipeline developed at the University of Pennsylvania, with the MeVIC image display and observation pipeline developed by researchers at Barco. Today an integrated virtual clinical trial design program, VCTdesigner, and a virtual clinical trial management program, VCTmanager, are freely available (www.VCTworld.org). The pipeline design is flexible and extensible, making it possible to add functionality easily and rapidly. It is our hope that by freely distributing the VCTmanager software, our field can standardize on this platform for running VCT.

Keywords

Virtual clinical trials observer models anatomy models imaging simulations breast cancer imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakic, P.R., Albert, M., Brzakovic, D., Maidment, A.D.A.: Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture. Medical Physics 29(9), 2140–2151 (2002)CrossRefGoogle Scholar
  2. 2.
    Bakic, P.R., Albert, M., Brzakovic, D., Maidment, A.D.A.: Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation. Medical Physics 29(9), 2131–2139 (2002)CrossRefGoogle Scholar
  3. 3.
    Bakic, P.R., Albert, M., Brzakovic, D., Maidment, A.D.A.: Mammogram synthesis using a three-dimensional simulation. III. Modeling and evaluation of the breast ductal network. Medical Physics 30(7), 1914–1925 (2003)CrossRefGoogle Scholar
  4. 4.
    Carton, A.K., Bakic, P., Ullberg, C., Derand, H., Maidment, A.D.: Development of a physical 3D anthropomorphic breast phantom. Med. Phys. 38(2), 891–896 (2011)CrossRefGoogle Scholar
  5. 5.
    Pokrajac, D.D., Maidment, A.D., Bakic, P.R.: Optimized generation of high resolution breast anthropomorphic software phantoms. Med. Phys. 39(4), 2290–2302 (2012)CrossRefGoogle Scholar
  6. 6.
    Shankla, V., Pokrajac, D., Weinstein, S.P., DeLeo, M., Tuite, C., Roth, R., et al.: Automatic insertion of simulated microcalcification clusters in a software breast phantom. In: SPIE Medical Imaging 2014: Physics of Medical Imaging, San Diego, CA. SPIE, vol. 9033 (2014)Google Scholar
  7. 7.
    Maidment, A.D.A., Bakic, P.R., Ruiter, N.V., Richard, F.: Model-based comparison of two breast tissue compression methodologies. Medical Physics 31(6), 1786 (2004)Google Scholar
  8. 8.
    Kuo, J., Ringer, P.A., Fallows, S.G., Bakic, P.R., Maidment, A.D.A., Ng, S.: Dynamic reconstruction and rendering of 3D tomosynthesis images. In: Pelc, N.J., Samei, E., Nishikawa, R.M. (eds.) Medical Imaging 2011:Proceedings of the SPIE, Orlando, FL. Proceedings of the SPIE, vol. 7961 (2011)Google Scholar
  9. 9.
    Marchessoux, C., Kimpe, T., Vansteenkiste, E., Staelens, S., Schelkens, P., Bosmans, H., et al. (eds.): Medical Virtual Imaging Chain (MeVIC). Medical Image Perception Conference XIII, Santa Barbara, CA (2009)Google Scholar
  10. 10.
    Braeckman, G., Marchessoux, C., Besnehard, B., Barbarien, J., Schelkens, P. (eds.): Perceptually optimized compression for heterogenous content in the context of medical networked applications, San Francisco. SPIE Electronic Imaging (2010)Google Scholar
  11. 11.
    Avanaki, A.N., Espig, E.S., Marchessoux, C., Krupinski, E.A., Bakic, P.R., Kimpe, T.R.L., et al.: Integration of spatio-temporal contrast sensitivity with a multi-slice channelized Hotelling observer. In: Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment, Orlando, FL. SPIE, vol. 8673, p. 86730H (2013)Google Scholar
  12. 12.
    Platisa, L., Goossens, B., Vansteenkiste, E., Badano, A., Phillips, W. (eds.): Channelized Hotelling observer for detection tasks in multi-slice images. Medical Image Perception Society (MIPS), Santa Barbara (2009)Google Scholar
  13. 13.
    Bakic, P.R., Ng, S., Ringer, P., Carton, A.-K., Conant, E.F., Maidment, A.: Validation and Optimization of Digital Breast Tomosynthesis Reconstruction using an Anthropomorphic Software Breast Phantom. In: Samei, E., Pelc, N. (eds.) SPIE Medical Imaging: Physics of Medical Imaging, San Diego, CA, vol. 7622 (2010)Google Scholar
  14. 14.
    Bakic, P.R., Ringer, P., Kuo, J., Ng, S., Maidment, A.D.A.: Analysis of Geometric Accuracy in Digital Breast Tomosynthesis Reconstruction. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds.) IWDM 2010. LNCS, vol. 6136, pp. 62–69. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Zeng, R., Park, S., Bakic, P.R., Myers, K.J.: Is the Outcome of Optimizing the System Acquisition Parameters Sensitive to the Reconstruction Algorithm in Digital Breast Tomosynthesis? In: Maidment, A.D.A., Bakic, P.R., Gavenonis, S. (eds.) IWDM 2012. LNCS, vol. 7361, pp. 346–353. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Vieira, M.A.C., Bakic, P.R., Maidment, A.D.A.: Effect of denoising on the quality of reconstructed images in digital breast tomosynthesis. In: Physics of Medical Imaging, Lake Buena Vista, FL. SPIE (2013)Google Scholar
  17. 17.
    Bakic, P.R., Li, C., West, E., Sak, M., Gavenonis, S.C., Duric, N., et al.: Comparison of 3D and 2D Breast Density Estimation from Synthetic Ultrasound Tomography Images and Digital Mammograms of Anthropomorphic Software Breast Phantoms. In: Pelc, N.J., Samei, E., Nishikawa, R.M. (eds.) SPIE Medical Imaging: Physics of Medical Imaging Lake Buena Vista, FL, vol. 7961 (2011)Google Scholar
  18. 18.
    Lau, A.B., Bakic, P.R., Reiser, I., Carton, A.-K., Maidment, A.D.A., Nishikawa, R.M.: An Anthropomorphic Software Breast Phantom for Tomosynthesis Simulation: Power Spectrum Analysis of Phantom Reconstructions. Medical Physics 37, 3473 (2010)CrossRefGoogle Scholar
  19. 19.
    Bakic, P.R., Keller, B., Zheng, Y., Wang, Y., Gee, J.C., Kontos, D., et al.: Testing Realism of Software Breast Phantoms: Texture Analysis of Synthetic Mammograms. In: Physics of Medical Imaging, Lake Buena Vista. SPIE, vol. 8668 (2013)Google Scholar
  20. 20.
    Abbey, C.K., Bakic, P.R., Pokrajac, D.D., Maidment, A.D.A., Eckstein, M.P., Boone, J.: Non-Gaussian Statistical Properties of Virtual Breast Phantoms. In: Kupinski, CM-TaM (eds.) SPIE Image Perception, Observer Performance, and Technology Assessment, San Diego. SPIE, vol. 9037 (2014)Google Scholar
  21. 21.
    Young, S., Park, S., Anderson, K., Badano, A., Myers, K.J., Bakic, P.R.: Estimating DBT performance in detection tasks with variable-background phantoms. In: Samei, E., Hsieh, J. (eds.) SPIE Medical Imaging: Physics of Medical imaging, Lake Buena Vista, FL, vol. 7258 (2009)Google Scholar
  22. 22.
    Young, S., Bakic, P.R., Myers, K.J., Jennings, R.J., Park, S.: A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data. Medical Physics 40(5), 051914 (2013)Google Scholar
  23. 23.
    Dance, D.R., Hunt, R.A., Bakic, P.R., Maidment, A.D.A., Sandborg, M., Ullman, G., et al.: Breast dosimetry using high-resolution voxel phantoms. Radiation Protection Dosimetry 114, 359–363 (2005)CrossRefGoogle Scholar
  24. 24.
    Carton, A.-K., Bakic, P.R., Ullberg, C., Maidment, A.D.A.: Development of a 3D high-resolution physical anthropomorphic breast phantom. In: Samei, E., Pelc, N.J. (eds.) SPIE Medical Imaging: Physics of Medical Imaging, San Diego, CA, vol. 7622 (2010)Google Scholar
  25. 25.
    Carton, A.-K., Bakic, P.R., Ullberg, C., Derand, H., Maidment, A.D.A.: Development of a physical 3D anthropomorphic breast phantom. Medical Physics 38(2), 891–896 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Dept. of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations