Formalization of fUML: An Application to Process Verification

  • Yoann Laurent
  • Reda Bendraou
  • Souheib Baarir
  • Marie-Pierre Gervais
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8484)

Abstract

Much research work has been done on formalizing UML Activity Diagrams for process modeling to verify different kinds of soundness properties (deadlock, unreachable activities and so on) on process models. However, these works focus mainly on the control-flow aspects of the process and have done some assumptions on the precise execution semantics defined in natural language in the UML specification. In this paper, we define a first-order logic formalization of fUML (Foundational Subset of Executable UML), the official and precise operational semantics of UML, in order to apply model checking techniques and therefore verify the correctness of fUML-based process models. Our formalization covers the control-flow, data-flow, resources, and timing dimensions of processes in a unified way. A working implementation based on the Alloy language has been developed. The implementation showed us that many kinds of behavioral properties not commonly supported by other approaches and implying multiple dimensions of the process can be efficiently checked.

Keywords

Formalization Model-checking fUML Alloy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mendling, J.: Empirical studies in process model verification. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 208–224. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Mendling, J., Verbeek, H., van Dongen, B.F., van der Aalst, W.M., Neumann, G.: Detection and prediction of errors in epcs of the sap reference model. Data & Knowledge Engineering 64(1), 312–329 (2008)CrossRefGoogle Scholar
  3. 3.
    Bendraou, R., Gervais, M.-P., Blanc, X.: UML4SPM: A UML2.0-based metamodel for software process modelling. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 17–38. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bendraou, R., Jézéquel, J., Gervais, M., Blanc, X.: A comparison of six uml-based languages for software process modeling. IEEE Transactions on Software Engineering 36(5), 662–675 (2010)CrossRefGoogle Scholar
  5. 5.
    Russell, N., van der Aalst, W.M., Ter Hofstede, A.H., Wohed, P.: On the suitability of uml 2.0 activity diagrams for business process modelling In: Proceedings of the 3rd Asia-Pacific Conference on Conceptual Modelling, vol. 53Google Scholar
  6. 6.
    van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  7. 7.
    Dong, Y., ShenSheng, Z.: Using π-calculus to formalize uml activity diagram for business process modeling. In: ECBS, pp. 47–54. IEEE (2003)Google Scholar
  8. 8.
    Eshuis, R.: Symbolic model checking of uml activity diagrams. TOSEM (2006)Google Scholar
  9. 9.
    Guelfi, N., Mammar, A.: A formal semantics of timed activity diagrams and its promela translation. In: APSEC. IEEE (2005)Google Scholar
  10. 10.
    OMG: Uml version 2.4.1 (2011), http://www.omg.org/spec/UML/
  11. 11.
    OMG: Fuml version 1.1 (2013), http://www.omg.org/spec/FUML/
  12. 12.
    van der Aalst, W., Van Hee, K., ter Hofstede, A., Sidorova, N., Verbeek, H., Voorhoeve, M., Wynn, M.: Soundness of workflow nets: classification, decidability, and analysis. Formal Aspects of Computing 23(3), 333–363 (2011)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Jackson, D.: Software Abstractions: logic, language and analysis. MIT Press (2011)Google Scholar
  14. 14.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)Google Scholar
  15. 15.
    Trčka, N., van der Aalst, W.M.P., Sidorova, N.: Data-flow anti-patterns: Discovering data-flow errors in workflows. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 425–439. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Jung, H.T., Joo, S.H.: Transformation of an activity model into a colored petri net model. In: TISC, pp. 32–37. IEEE (2010)Google Scholar
  17. 17.
    Motogna, S., Cr Ciun, F., Lazar, I.: Pârv: Formal definition of fuml in k-framework. Studia Universitatis Babes-Bolyai, Informatica 58(3) (2013)Google Scholar
  18. 18.
    Abdelhalim, I., Sharp, J., Schneider, S., Treharne, H.: Formal verification of tokeneer behaviours modelled in fUML using CSP. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 371–387. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yoann Laurent
    • 1
  • Reda Bendraou
    • 1
  • Souheib Baarir
    • 1
    • 2
  • Marie-Pierre Gervais
    • 1
    • 2
  1. 1.Sorbonne Universites, UPMC Univ Paris 06, UMR 7606, LIP6ParisFrance
  2. 2.Universite Paris Ouest Nanterre La DéfenseNanterreFrance

Personalised recommendations