Gravimetric Sensing

  • Diethelm JohannsmannEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


The advanced QCMs provide information beyond gravimetry, but that is not to say that gravimetry was obsolete. Gravimetry is based on the Sauerbrey equation, derived in this chapter from the small load approximation. Strategies are discussed to improve the limit of detection. At least as important as sensitivity is specificity, meaning the ability to distinguish between different analytes. Specificity is achieved with receptor layers.


Molecular Imprint Polymer Surface Acoustic Wave Adsorbed Mass Bulk Acoustic Wave Linear Solvation Energy Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.




Definition (Comments)


Mass-sensitivity constant


Thickness of a layer




As an index: film


Resonance frequency


Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))


Shear modulus of AT-cut quartz (G q  ≈ 29 × 109 Pa, often called µ q in the literature.)


Mass per unit area


Overtone order


As an index: quartz resonator


Q-factor (Q = 1/D = f r /(2Γ))


As an index: reference state of a crystal in the absence of a load


As an index: Surface




(Tangential) displacement

Velocity (v̂ = iωû)


Load impedance


Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)


Imaginary part of a resonance frequency (Half-bandwidth at half-height of a resonance)


As a prefix: uncertainty, scatter


As a prefix: A shift induced by the presence of the sample


A small quantity (in Taylor expansions)




Density of crystalline quartz (ρ q  = 2.65 g/cm3)

\( {\hat{\sigma }} \)

(Tangential) stress (also called traction when exerted at a surface)


Angular frequency


  1. 1.
    Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 155(2), 206–222 (1959)ADSCrossRefGoogle Scholar
  2. 2.
    Stockbridge, C.D.: Resonance frequency versus mass added to quartz crystals In: Behrndt, K (ed.) Vacuum Microbalance Techniques, vol. 5, 4th edn. Plenum Press, New York (1966)Google Scholar
  3. 3.
    Lu, C., Czanderna, A.W.: Applications of Piezoelectric Quartz Crystal Microbalances. Elsevier, Amsterdam (1984)Google Scholar
  4. 4.
    King, W.H.: Piezoelectric sorption detector. Anal. Chem. 36(9), 1735 (1964)CrossRefGoogle Scholar
  5. 5.
    Janata, J.: Principles of Chemical Sensors. Springer, New York (2009)Google Scholar
  6. 6.
    Cheng, C.I., Chang, Y.P., Chu, Y.H.: Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem. Soc. Rev. 41(5), 1947–1971 (2012)CrossRefGoogle Scholar
  7. 7.
    Hanay, M.S., Kelber, S., Naik, A.K., Chi, D., Hentz, S., Bullard, E.C., Colinet, E., Duraffourg, L., Roukes, M.L.: Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 7(9), 602–608 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    van Noort, D., Rani, R., Mandenius, C.F.: Improving the sensitivity of a quartz crystal microbalance for biosensing by using porous gold. Mikrochim. Acta 136(1–2), 49–53 (2001)CrossRefGoogle Scholar
  9. 9.
    Grate, J.W.: Acoustic wave microsensor arrays for vapor sensing. Chem. Rev. 100(7), 2627–2647 (2000)CrossRefGoogle Scholar
  10. 10.
    Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., Büttgenbach, S.: Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sens. Actuators B-Chemical 76(1–3), 47–57 (2001)CrossRefGoogle Scholar
  11. 11.
    Lin, Z.X., Yip, C.M., Joseph, I.S., Ward, M.D.: Operation of an ultrasensitive 30-Mhz quartz-crystal microbalance in liquids. Anal. Chem. 65(11), 1546–1551 (1993)CrossRefGoogle Scholar
  12. 12.
    Sota, H., Yoshimine, H., Whittier, R.F., Gotoh, M., Shinohara, Y., Hasegawa, Y., Okahata, Y.: A versatile planar QCM-based sensor design for nonlabeling biomolecule detection. Anal. Chem. 74(15), 3592–3598 (2002)CrossRefGoogle Scholar
  13. 13. Accessed 18 May 2013
  14. 14.
    For an overview see Piazza, G., Felmetsger, V., Muralt, P., Olsson, R.H., Ruby, R.: Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull. 37(11), 1051–1061 (2012)Google Scholar
  15. 15.
    Wingqvist, G.: AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—A review. Surf. Coat. Technol. 205(5), 1279–1286 (2010)CrossRefGoogle Scholar
  16. 16.
    Wingqvist, G., Bjurstrom, J., Liljeholm, L., Yantchev, V., Katardjiev, I.: Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sens. Actuators B-Chemical 123(1), 466–473 (2007)CrossRefGoogle Scholar
  17. 17.
    Birch, J., Marriott, S.P.: Appraisal of the inverted-mesa at-cut quartz resonator for achieving low-inductance high-Q single-response crystal units. Electron. Lett. 15(20), 641–643 (1979)CrossRefGoogle Scholar
  18. 18.
    Kreutz, C., Lorgen, J., Graewe, B., Bargon, J., Yoshida, M., Fresco, Z.M., Frechet, J.M.J.: High frequency quartz micro balances: a promising path to enhanced sensitivity of gravimetric sensors. Sensors 6(4), 335–340 (2006)CrossRefGoogle Scholar
  19. 19.
    Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., Büttgenbach, S.: Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sen. Actuators B-Chemical 76(1–3), 47–57 (2001)CrossRefGoogle Scholar
  20. 20.
    Kato, F., Ogi, H., Yanagida, T., Nishikawa, S., Hirao, M., Nishiyama, M.: Resonance acoustic microbalance with naked-embedded quartz (RAMNE-Q) biosensor fabricated by microelectromechanical-system process. Biosens. Bioelectron. 33(1), 139–145 (2012)CrossRefGoogle Scholar
  21. 21.
    Rock, F., Barsan, N., Weimar, U.: Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Fanget, S., Hentz, S., Puget, P., Arcamone, J., Matheron, M., Colinet, E., Andreucci, P., Duraffourg, L., Myers, E., Roukes, M.L.: Gas sensors based on gravimetric detection-A review. Sens. Actuators B-Chemical 160(1), 804–821 (2011)CrossRefGoogle Scholar
  24. 24.
    Arlett, J.L., Myers, E.B., Roukes, M.L.: Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6(4), 203–215 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Bucking, W., Du, B., Turshatov, A., Konig, A.M., Reviakine, I., Bode, B., Johannsmann, D.: Quartz crystal microbalance based on torsional piezoelectric resonators. Rev. Sci. Instrum. 78(7), 074903 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRefGoogle Scholar
  27. 27.
    Cooper, M.A.: Label-free screening of bio-molecular interactions. Anal. Bioanal. Chem. 377(5), 834–842 (2003)CrossRefGoogle Scholar
  28. 28.
    Rich, R.L., Myszka, D.G.: Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol. 11(1), 54–61 (2000)CrossRefGoogle Scholar
  29. 29.
    Rothenhäusler, B., Knoll, W.: Surface-plasmon microscopy. Nature 332(6165), 615–617 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    Yeatman, E., Ash, E.A.: Surface-plasmon microscopy. Electron. Lett. 23(20), 1091–1092 (1987)CrossRefGoogle Scholar
  31. 31.
    Nelson, B.P., Grimsrud, T.E., Liles, M.R., Goodman, R.M., Corn, R.M.: Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem. 73(1), 1–7 (2001)CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Brutschy, M., Lubczyk, D., Muellen, K., Waldvogel, S.R.: Surface pretreatment boosts the performance of supramolecular affinity materials on quartz crystal microbalances for sensor applications. Anal. Chem. 85(21), 10526–10530 (2013)CrossRefGoogle Scholar
  34. 34.
    Schramm, U., Roesky, C.E.O., Winter, S., Rechenbach, T., Boeker, P., Lammers, P.S., Weber, E., Bargon, J.: Temperature dependence of an ammonia sensor in humid air based on a cryptophane-coated quartz microbalance. Sens. Actuators B-Chemical 57(1–3), 233–237 (1999)CrossRefGoogle Scholar
  35. 35.
    Harris, D. C.: Gas chromatography. In: Quantitative Chemical Analysis, pp 675–712, 5th edn. W. H. Freeman and Company, New York (1999)Google Scholar
  36. 36.
    Lubczyk, D., Siering, C., Lorgen, J., Shifrina, Z.B., Mullen, M., Waldvogel, S.R.: Simple and sensitive online detection of triacetone triperoxide explosive. Sens. Actuators B-Chemical 143(2), 561–566 (2010)CrossRefGoogle Scholar
  37. 37.
    Goubaidoulline, I., Vidrich, G., Johannsmann, D.: Organic vapor sensing with ionic liquids entrapped in alumina nanopores on quartz crystal resonators. Anal. Chem. 77(2), 615–619 (2005)CrossRefGoogle Scholar
  38. 38.
    Schön, P., Michalek, R., Walder, L.: Liquid density response of a quartz crystal microbalance modified with mesoporous titanium dioxide. Anal. Chem. 71, 3305 (1999)CrossRefGoogle Scholar
  39. 39.
    Zellers, E.T., Batterman, S.A., Han, M.W., Patrash, S.J.: Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface-acoustic-wave sensor arrays. Anal. Chem. 67(6), 1092–1106 (1995)CrossRefGoogle Scholar
  40. 40.
    Park, J., Groves, W.A., Zellers, E.T.: Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis. Anal. Chem. 71(17), 3877–3886 (1999)CrossRefGoogle Scholar
  41. 41.
    Hierlemann, A., Zellers, E.T., Ricco, A.J.: Use of linear salvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors. Anal. Chem. 73(14), 3458–3466 (2001)CrossRefGoogle Scholar
  42. 42.
    Lewis, P.R., Manginell, R.P., Adkins, D.R., Kottenstette, R.J., Wheeler, D.R., Sokolowski, S.S., Trudell, D.E., Byrnes, J.E., Okandan, M., Bauer, J.M., Manley, R.G., Frye-Mason, G.C.: Recent advancements in the gas-phase MicroChemLab. IEEE Sens. J. 6(3), 784–795 (2006)CrossRefGoogle Scholar
  43. 43.
    Speight, R.E., Cooper, M.A.: A survey of the 2010 quartz crystal microbalance literature. J. Mol. Recognit. 25(9), 451–473 (2012)CrossRefGoogle Scholar
  44. 44.
    Martin, S.J., Granstaff, V.E., Frye, G.C.: Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63(20), 2272–2281 (1991)CrossRefGoogle Scholar
  45. 45.
    Plunkett, M.A., Wang, Z.H., Rutland, M.W., Johannsmann, D.: Adsorption of pNIPAM layers on hydrophobic gold surfaces, measured in situ by QCM and SPR. Langmuir 19(17), 6837–6844 (2003)CrossRefGoogle Scholar
  46. 46.
    Bingen, P., Wang, G., Steinmetz, N.F., Rodahl, M., Richter, R.P.: Solvation effects in the quartz crystal microbalance with dissipation monitoring response to biomolecular adsorption. A phenomenological approach. Anal. Chem. 80(23), 8880–8890 (2008)CrossRefGoogle Scholar
  47. 47.
    Muratsugu, M., Ohta, F., Miya, Y., Hosokawa, T., Kurosawa, S., Kamo, N., Ikeda, H.: Quartz-crystal microbalance for the detection of microgram quantities of human serum-albumin—relationship between the frequency change and the mass of protein adsorbed. Anal. Chem. 65(20), 2933–2937 (1993)CrossRefGoogle Scholar
  48. 48.
    Shons, A., Dorman, F., Najarian, J.: An immunospecific microbalance. J. Biomed. Mater. Res. 6, 565 (1972)CrossRefGoogle Scholar
  49. 49.
    Vaughan, R. D., Guilbault, G. G.: Piezoelectric immunosensors. In: Steinem, C., Janshoff, A. (eds.) Piezoelectric Sensors. Springer, Berlin (2007)Google Scholar
  50. 50.
    Ebato, H., Gentry, C.A., Herron, J.N., Muller, W., Okahata, Y., Ringsdorf, H., Suci, P.A.: Investigation of specific binding of antifluorescyl antibody and fab to fluorescein lipids in langmuir-blodgett deposited films using quartz-crystal microbalance methodology. Anal. Chem. 66(10), 1683–1689 (1994)CrossRefGoogle Scholar
  51. 51.
    Lee, S.-W., Kunitake, T.: Handbook of molecular imprinting: advanced sensor applications. Pan Stanford Publishing, Singapore (2012)Google Scholar
  52. 52.
    Suriyanarayanan, S., Cywinski, P.J., Moro, A.J., Mohr, G.J., Kutner, W.: Chemosensors based on molecularly imprinted polymers. In Mol. Imprinting 325, 165–265 (2012)CrossRefGoogle Scholar
  53. 53.
    Dickert, F.L., Tortschanoff, M., Bulst, W.E., Fischerauer, G.: Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water. Anal. Chem. 71(20), 4559–4563 (1999)CrossRefGoogle Scholar
  54. 54.
    Reddy, S.M., Phan, Q.T., El-Sharif, H., Govada, L., Stevenson, D., Chayen, N.E.: Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers. Biomacromolecules 13(12), 3959–3965 (2012)CrossRefGoogle Scholar
  55. 55.
    Cheng, C.I., Chang, Y.P., Chu, Y.H.: Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem. Soc. Rev. 41(5), 1947–1971 (2012)CrossRefGoogle Scholar
  56. 56.
    Cabric, S., Sanchez, J., Johansson, U., Larsson, R., Nilsson, B., Korsgren, O., Magnusson, P.U.: Anchoring of vascular endothelial growth factor to surface-immobilized heparin on pancreatic islets: implications for stimulating islet angiogenesis. Tissue Eng. Part A 16(3), 961–970 (2010)CrossRefGoogle Scholar
  57. 57.
    Tai, D.F., Lin, C.Y., Wu, T.Z., Chen, L.K.: Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal. Chem. 77(16), 5140–5143 (2005)CrossRefGoogle Scholar
  58. 58.
    Pomorska, A., Shchukin, D., Hammond, R., Cooper, M.A., Grundmeier, G., Johannsmann, D.: Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase. Anal. Chem. 82(6), 2237–2242 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Physical ChemistryClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations