The Small Load Approximation Revisited

Part of the Soft and Biological Matter book series (SOBIMA)


The chapter contains two extensions of the SLA. The first (Sect. 6.1) generalizes the SLA to arbitrary resonator shapes and modes of vibration. The load impedance in this formulation is a 3rd-rank tensor. The formalism shows that the statistical weight in area-averaging is the square of the local amplitude. The second extension (Sect. 6.2) is a perturbation analysis, applied to the model of the parallel plate. The perturbation is carried to 3rd order. The 3rd-order result fixes an inconsistency obtained when treating viscoelastic thin films in air with the conventional SLA.


  1. 1.
    Sakurai, J.J.: Modern Quantum Mechanics. Addison Wesley, New York (1985)Google Scholar
  2. 2.
    Ohno, I.: Rectangular parallellepiped resonance method for piezoelectric-crystals and elastic-constants of alpha-quartz. Phys. Chem. Miner. 17(5), 371–378 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    Ogi, H., Ohmori, T., Nakamura, N., Hirao, M.: Elastic, anelastic, and piezoelectric coefficients of alpha-quartz determined by resonance ultrasound spectroscopy. J. Appl. Phys. 100(5), 053511 (2006)Google Scholar
  4. 4.
    Herrscher, M., Ziegler, C., Johannsmann, D.: Shifts of frequency and bandwidth of quartz crystal resonators coated with samples of finite lateral size. J. Appl. Phys. 101(11), 114909 (2007)Google Scholar
  5. 5.
    Rabello-Soares, M.C., Korzennik, S.G., Schou, J.: The determination of MDI high-degree mode frequencies. ESA Spec. Publ. 464, 129–136 (2001)ADSGoogle Scholar
  6. 6.
  7. 7.
    Pechhold, W.: Zur Behandlung von Anregungs- und Störungsproblemen bei akustischen Resonatoren. Acustica 9, 48–56 (1959)Google Scholar
  8. 8.
  9. 9.
    Gere, J.M., Timoshenko, S.P.: Mechanics of Materials. PWS Publishing Company, Boston (1997)Google Scholar
  10. 10.
    Mason, W.P., Baker, W.O., McSkimin, H.J., Heiss, J.H.: Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys. Rev. 75(6), 936–946 (1949)ADSCrossRefGoogle Scholar
  11. 11.
    Raiteri, R., Grattarola, M., Butt, H.J., Skladal, P.: Micromechanical cantilever-based biosensors. Sens. Actuators B-Chem. 79(2–3), 115–126 (2001)CrossRefGoogle Scholar
  12. 12.
    Ballantine, D.S., White, R.M., Martin, S.J., Ricco, A.J., Zellers, E.T., Frye, G.C., Wohltjen, H.: Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications. Academic Press, New York (1997)Google Scholar
  13. 13.
    Hempel, U., Lucklum, R., Hauptmann, P.R., EerNisse, E.P., Puccio, D., Diaz, R.F.: Quartz crystal resonator sensors under lateral field excitation—a theoretical and experimental analysis. Measur. Sci. Technol. 19(5), 055201 (2008)Google Scholar
  14. 14.
  15. 15.
    Johannsmann, D.: Derivation of the shear compliance of thin films on quartz resonators from comparison of the frequency shifts on different harmonics: a perturbation analysis. J. Appl. Phys. 89(11), 6356–6364 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Wolff, O., Seydel, E., Johannsmann, D.: Viscoelastic properties of thin films studied with quartz crystal resonators. Faraday Discuss. 107, 91–104 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Wolff, O., Johannsmann, D.: Shear moduli of polystyrene thin films determined with quartz crystal resonators in the sandwich configuration. J. Appl. Phys. 87(9), 4182–4188 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Schilling, H., Pechhold, W.: Two quartz resonator methods for investigation of complex shear modulus of polymers. Acustica 22(5), 244 (1969)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Physical ChemistryClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations