Modeling the Resonator as a Parallel Plate

  • Diethelm Johannsmann
Part of the Soft and Biological Matter book series (SOBIMA)


After an introduction to complex resonance frequencies, the chapter provides a thorough discussion of the acoustic impedance, the acoustic wave impedance, and other types of impedances with relevance to either the QCM itself or to related problems. The load impedance (the complex ratio of the amplitudes of periodic stress and periodic velocity, both evaluated at the resonator surface) is, what the QCM measures on a fundamental level. The description continues with three separate but equivalent ways of modeling the viscoelastic plate and its resonances. All three formulations have their benefits and drawbacks. Building on these models, it is proven that the complex frequency shift is proportional to the complex load impedance, which is the essence of the small load approximation. The load impedance can be averaged over area and time. The last section deals with samples, which themselves are small resonators with their own resonance frequency. In the presence of such “coupled resonances”, the frequency shift may be positive or negative, depending on whether the resonance frequency of the coupled resonator is smaller or larger than the resonance frequency of the crystal.




Definition (Comments)


Average (over area or time, as indicated by an index)


(Effective) area of the resonator plate (see Sect.  7.4)


Electric susceptance (B el  = Im(\( \tilde{Y}_{el} \)))


Offset of the susceptance in a data trace of B el (f) (fit parameter in Eq. 4.5.30)

\( \tilde{c} \)

Speed of (shear) sound \( \left( \tilde{c} = \left( {\tilde{G}/\uprho} \right)^{ 1/ 2} \right) \)


Motional capacitance

\( \overline{C}_{ 1}\)

Motional capacitance of the four-element circuit (Piezoelectric stiffening and the load have been taken into account)


Thickness of a layer


Thickness of the resonator (d q  = m q q  = Z q /(2ρ q f 0))


Infinitesimal capacitance (Fig. 4.8a)


Infinitesimal inductance (Fig. 4.8a)


Dissipation factor (D = 1/Q = 2Γ/f r )


Electric field


Total kinetic energy involved in a collision (see text above Eq. 4.2.16)


Piezoelectric stress coefficient (e 26 = 9.65 × 10−2 C/m2 for AT-cut quartz)


As an index: film



Complex resonance frequency (\( \tilde{f} = f_{r} + {\text{i}}\Gamma \))


Damped resonance frequency (\( \tilde{f}_{d} = \left( {f_{r}^{2} -\Gamma ^{2} } \right)^{1/2} +\; {\text{i}}\Gamma \), also: “ringing frequency”)


Undamped resonance frequency


Series resonance frequency (f r  = f s by definition in this book)


Resonance frequency at the fundamental

f 0 = Z q /(2m q ) = Z q /(2ρ q d q )

Might also have been called f 1; we follow the literature in calling it f 0

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{F} \)


\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{F}_{ex} \)

An external force driving a resonator

\( \tilde{G} \)

Shear modulus


Electric conductance (G el  = Re(\( \tilde{Y}_{el} \)))


Conductance on the peak of the resonance (fit parameter in Eq. 4.5.30)


Offset of the conductance in a data trace of G el (f) (fit parameter in Eq. 4.5.30)


Shear modulus of AT-cut quartz (G q  ≈ 29 × 109 Pa, often called µ q in the literature. G q  is the piezoelectrically stiffened modulus (Sect.  5.3))

\( \tilde{J} \)

Shear compliance


Half the thickness of a plate or layer, half the length of a cable


Magnetic field


Electric current

\( \tilde{k} \)

Wavenumber (\( \tilde{k} = {\tilde{\upomega }/}\tilde{c} \))


Piezoelectric coupling coefficient (k t 2  = e 26/(ε q ε0 G q )2)


As an index: liquid

\( \bar{L}_{j} \)

Transfer matrix for layer j (See Eq. 4.4.2)


Motional inductance

\( \bar{L}_{ 1} \)

Motional inductance of the four-element circuit (Piezoelectric stiffening and the load have been taken into account)


As a index: motional (Applies to either the motional branch of the four-element circuit (Fig. 4.12b) or to the left-hand side of the transformer in the Mason-circuit (Fig. 4.10))




Mass per unit area of the resonator (m q  = ρ q d q  = Z q /(2f 0))


Mass of a Resonator


Reduced mass of a coupled two-body system (1/M red  = 1/M A  + 1/M B )


Overtone order

nright, nleft

Number of turns of a transformer (Eq. 4.5.7)

n, ñ

Refractive index (\( \tilde{n} = {\tilde{\upvarepsilon }}_{r}^{ 1/ 2} \))


As an index: resonance condition of the unloaded plate under Open-Circuit conditions. With no current into the electrodes (more precisely, with vanishing electric displacement everywhere), piezoelectric stiffening is fully accounted for by using the piezoelectrically stiffened shear modulus


As an index: Particle (Sect. 4.6.3)


Total momentum involved in a collision (see text above Eq. 4.2.16)


As an index: quartz resonator


Q-factor (Q = 1/D = f r /(2Γ))


As an index: reference state of a crystal in the absence of a load

\( \tilde{r} \)

Amplitude reflection coefficient (reflectivity, for short)

Not to be confused with the power reflectance coefficient

Defined with regard to displacement (not stress)

\( \tilde{r}_{q,\,S} \)

Reflectivity evaluated at the resonator surface (see text above Eq. 4.4.6)


As an index: Resonator


Motional resistance

\( \overline{R}_{1}\)

Motional resistance of the four-element circuit (piezoelectric stiffening and the load have been taken into account)

\( \overline{S}_{i,\,j}\)

Transfer matrix the interface between layer i and j (see Eq. 4.4.2)


As an index: Surface



Amplitude transmission coefficient


(Tangential) displacement


Electric voltage

Velocity (v̂ = iωû)


Half-band full-width of a resonance (w = 2Γ)

x(t), (t)

Some time-harmonic function (real or complex) \(\begin{gathered} \left(x t \right) = x_{0} { \cos }(\upomega t + {\upvarphi }), \hfill \\ \tilde{x}\left( t \right) = \hat{x} { \exp }({\text{i}}\upomega\,t)\hfill \\ \end{gathered}\)

The function’s amplitude (\( \hat{x} = x_{0} { \cos }({\upvarphi }) - {\text{i}}x_{0} { \sin }({\upvarphi }) \))


Spatial coordinate perpendicular to the surface


Electric admittance (\( \tilde{Y}_{el} = 1/\tilde{Z}_{el} \))

Acoustic wave impedance (Table 4.1, mostly a shear-wave impedance)

\( \tilde{Z}_{ac} \)

Acoustic impedance (Table 4.1)


Electric impedance (Table 4.1)


Electromagnetic wave impedance of plane waves (Table 4.1)


Load impedance (Table 4.1)


Load impedance in tensor form (Table 4.1)


Electric impedance of an LCR-circuit (Eq. 4.5.15)


Acoustic wave impedance of a liquid (\( \tilde{Z}_{liq} = \left( {{\text{i}}\upomega \uprho _{liq}\upeta_{liq} } \right)^{ 1/ 2} \))


Mechanical impedance (Table 4.1)


Characteristic impedance of a particle coupled to the main resonator (Z P  = (κ P M P )1/2, Sect. 4.6.3)


Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)


Characteristic impedance of a resonator (Z R  = (κ R M R )1/2, Sect. 4.6.3)

\( \tilde{Z}_{W,\,et} \)

Electric wave impedance (Table 4.1)

Z11, Z12

Elements of the transmission line in Fig. 4.18


Damping factor (has units of Hz, γ D  = 2πΓ)


Imaginary part of a resonance frequency


A difference in frequency from the resonance frequency (Eq. 4.1.29)


Loss angle (tan(δ L ) = G″/G′ = J″/J′ often called tan(δ) in rheology)


Loss angle of the quartz plate (can be an effective parameter capturing losses other than the intrinsic viscous dissipation)


As a prefix: A shift induced by the presence of the sample


A small quantity (In Taylor expansions)

\( {\tilde{\upvarepsilon }} \)

Dielectric permittivity (\( {\tilde{\upvarepsilon }} = {\tilde{\upvarepsilon }}_{r}\upvarepsilon_{0} \))


Dielectric constant of AT-cut quartz (ε q  = 4.54)

\( {\tilde{\upvarepsilon }}_{r}\)

Relative dielectric permittivity (Also: “dielectric constant”)


Dielectric permittivity of vacuum (ε0 = 8.854 × 10−12 C/(Vm))




Factor converting between mechanical and electric quantities in the Mason circuit (ϕ = Ae 26/d q )

\( {\tilde{\upeta }}\)

Viscosity (\( {\tilde{\upeta }} = \tilde{G}/\left( {{\text{i}}\upomega} \right) \))


The “elastic viscosity” of AT-cut quartz, defined as η q  = G q ″/ω. η q is roughly independent of frequency (G q ″ is not). η q depends on the defect density


Spring constant of a Resonator


Magnetic permeability


Magnetic permeability of vacuum (μ0 = 4π × 10−7 Vs/Am)

\({\upmu}_r, \tilde{\upmu}_r\)

Relative magnetic permeability




Density of crystalline quartz (ρ q  = 2.65 g/cm3)


(Tangential) stress


Tangential stress at the resonator surface (Also: “traction”)


Drag coefficient of a Resonator (sometimes called “friction coefficient”, not to be confused with the friction coefficient in tribology)


Angular frequency

\( \upomega_{0}\)

Undamped angular resonance frequency (ω0 = (κ R /M R )1/2)


Undamped resonance frequency of an LCR-circuit (ω LC  = (LC)−1/2)


Particle resonance frequency of a coupled resonance (ω P  ≈ (κ P /M P )1/2)

\( {\tilde{\upomega }}_{r}\)

Angular resonance frequency (\( {\tilde{\upomega }}_{r} = 2\uppi\tilde{f}_{r} = 2\uppi \left( {f_{r} + {\text{i}}\Gamma } \right) \))


  1. 1.
    Musil, R.: The Confusions of Young Törless. Penguin Classics (2001) (first published 1906)Google Scholar
  2. 2.
    Woan, G.: The Cambridge Handbook of Physics Formulas. Cambridge University Press, Cambridge (2000)Google Scholar
  3. 3.
    Daikhin, L., Gileadi, E., Katz, G., Tsionsky, V., Urbakh, M., Zagidulin, D.: Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids. Anal. Chem. 74(3), 554–561 (2002)CrossRefGoogle Scholar
  4. 4.
    Rodahl, M., Hook, F., Krozer, A., Brzezinski, P., Kasemo, B.: Quartz-crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66(7), 3924–3930 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Kochman, A., Krupka, A., Grissbach, J., Kutner, W., Gniewinska, B., Nafalski, L.: Design and performance of a new thin-layer radial-flow holder for a quartz crystal resonator of an electrochemical quartz crystal microbalance. Electroanalysis 18(22), 2168–2173 (2006)CrossRefGoogle Scholar
  6. 6.
    Reed, C.E., Kanazawa, K.K., Kaufman, J.H.: Physical Description of a Viscoelastically Loaded at-Cut Quartz Resonator. J. Appl. Phys. 68(5), 1993–2001 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    Voinova, M.V., Rodahl, M., Jonson, M., Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys. Scr. 59(5), 391–396 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Johannsmann, D., Mathauer, K., Wegner, G., Knoll, W.: Viscoelastic properties of thin-films probed with a quartz-crystal resonator. Phys. Rev. B 46(12), 7808–7815 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Bandey, H.L., Martin, S.J., Cernosek, R.W., Hillman, A.R.: Modeling the responses of thickness-shear mode resonators under various loading conditions. Anal. Chem. 71(11), 2205–2214 (1999)CrossRefGoogle Scholar
  10. 10.
    Nakamoto, T., Moriizumi, T.: A theory of a quartz crystal microbalance based upon a mason equivalent-circuit. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 29(5), 963–969 (1990)Google Scholar
  11. 11.
    Mason, W.P.: Piezoelectric crystals and their applications to ultrasonics. Princeton, Van Nostrand (1948)Google Scholar
  12. 12.
    Kanazawa, K.K., Gordon, J.G.: Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57(8), 1770–1771 (1985)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Yeh, P.: Optical Waves in Layered Media. Wiley, New York (2005)Google Scholar
  15. 15.
    Katsidis, C.C., Siapkas, D.I.: General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41(19), 3978–3987 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Salomaki, M., Loikas, K., Kankare, J.: Effect of polyelectrolyte multilayers on the response of a quartz crystal microbalance. Anal. Chem. 75(21), 5895–5904 (2003)CrossRefGoogle Scholar
  17. 17.
    Mason, W.P., Baker, W.O., McSkimin, H.J., Heiss, J.H.: Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys. Rev. 75(6), 936–946 (1949)ADSCrossRefGoogle Scholar
  18. 18.
    Alig, I., Lellinger, D., Sulimma, J., Tadjbakhsch, S.: Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films. Rev. Sci. Instrum. 68(3), 1536–1542 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Azzam, R.M.A., Bashara, N.M.: Ellipsometry and Polarized Light. Springer, New York (1987)Google Scholar
  20. 20.
    Lekner, J.: Theory of Reflection of Electromagnetic and Particle Waves. Springer, Dordrecht (1987)Google Scholar
  21. 21.
    Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRefGoogle Scholar
  22. 22.
    Thurston, R.N.: Piezoelectrically excited vibrations. In: Truesdell, C. (ed.) Mechanics of Solids, vol. 4, p. 257. Springer, Heidelberg (1984)Google Scholar
  23. 23.
    Royer, D., Dieulesaint, E.: Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications. Springer, New York (1999)Google Scholar
  24. 24.
    Ulaby, F.T.: Fundamentals of Applied Electromagnetics. Prentice Hall, Upper Saddle River (2010)Google Scholar
  25. 25.
  26. 26.
    Granstaff, V.E., Martin, S.J.: Characterization of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers. J. Appl. Phys. 75(3), 1319–1329 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    Butterworth, S.: On electrically-maintained vibrations. Proc. Phys. Soc. London 27, 410 (1914)CrossRefGoogle Scholar
  28. 28.
    Dyke, K.V.: The piezo-electric resonator and its equivalent network. Proc. Inst. Radio Engin. 16(6), 742 (1928)Google Scholar
  29. 29.
    Calvo, E.J., Etchenique, R., Bartlett, P.N., Singhal, K., Santamaria, C.: Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films. Faraday Discuss. 107, 141–157 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Rast, S., Wattinger, C., Gysin, U., Meyer, E.: The noise of cantilevers. Nanotechnology 11(3), 169–172 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Lee, I., Lee, J.: Measurement uncertainties in resonant characteristics of MEMS resonators. J. Mech. Sci. Technol. 27(2), 491–500 (2013)CrossRefGoogle Scholar
  32. 32.
  33. 33. Accessed 10 Aug 2013
  34. 34.
    Horowitz, P., Hill, W.: The Art of Electronics. Cambridge University Press, Cambridge (1989)Google Scholar
  35. 35.
    Gottlieb, I.M.: Practical Oscillator Handbook. Newnes, Oxford (1997)Google Scholar
  36. 36.
    Pechhold, W.: Zur Behandlung von Anregungs- und Störungsproblemen bei akustischen Resonatoren. Acustica 9, 48–56 (1959)Google Scholar
  37. 37.
    Arnau, A.: Piezoelectric Transducers and Applications. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  38. 38.
    Johannsmann, D.: Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys. Chem. Chem. Phys. 10(31), 4516–4534 (2008)CrossRefGoogle Scholar
  39. 39.
    Berg, S., Johannsmann, D.: Laterally coupled quartz resonators. Anal. Chem. 73(6), 1140–1145 (2001)CrossRefGoogle Scholar
  40. 40.
    Dybwad, G.L.: A sensitive new method for the determination of adhesive bonding between a particle and a substrate. J. Appl. Phys. 58(7), 2789–2790 (1985)ADSCrossRefGoogle Scholar
  41. 41.
    Mason, W.P.: Electrical and mechanical analogies. Bell Syst. Tech. J. 20, 405–414 (1941)CrossRefGoogle Scholar
  42. 42.
    Meyers, M.A., Chawla, K.K.: Mechanical Behavior of Materials. Cambridge University Press, Cambridge (2008)Google Scholar
  43. 43.
  44. 44.
    Gileadi, E.: Physical Electrochemistry: Fundamentals. A Textbook for Students of Science and Engineering, Techniques and Applications. Wiley, New York (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Physical ChemistryClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations