Modeling the Resonator as a Parallel Plate

Chapter

Abstract

After an introduction to complex resonance frequencies, the chapter provides a thorough discussion of the acoustic impedance, the acoustic wave impedance, and other types of impedances with relevance to either the QCM itself or to related problems. The load impedance (the complex ratio of the amplitudes of periodic stress and periodic velocity, both evaluated at the resonator surface) is, what the QCM measures on a fundamental level. The description continues with three separate but equivalent ways of modeling the viscoelastic plate and its resonances. All three formulations have their benefits and drawbacks. Building on these models, it is proven that the complex frequency shift is proportional to the complex load impedance, which is the essence of the small load approximation. The load impedance can be averaged over area and time. The last section deals with samples, which themselves are small resonators with their own resonance frequency. In the presence of such “coupled resonances”, the frequency shift may be positive or negative, depending on whether the resonance frequency of the coupled resonator is smaller or larger than the resonance frequency of the crystal.

References

  1. 1.
    Musil, R.: The Confusions of Young Törless. Penguin Classics (2001) (first published 1906)Google Scholar
  2. 2.
    Woan, G.: The Cambridge Handbook of Physics Formulas. Cambridge University Press, Cambridge (2000)Google Scholar
  3. 3.
    Daikhin, L., Gileadi, E., Katz, G., Tsionsky, V., Urbakh, M., Zagidulin, D.: Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids. Anal. Chem. 74(3), 554–561 (2002)CrossRefGoogle Scholar
  4. 4.
    Rodahl, M., Hook, F., Krozer, A., Brzezinski, P., Kasemo, B.: Quartz-crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66(7), 3924–3930 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Kochman, A., Krupka, A., Grissbach, J., Kutner, W., Gniewinska, B., Nafalski, L.: Design and performance of a new thin-layer radial-flow holder for a quartz crystal resonator of an electrochemical quartz crystal microbalance. Electroanalysis 18(22), 2168–2173 (2006)CrossRefGoogle Scholar
  6. 6.
    Reed, C.E., Kanazawa, K.K., Kaufman, J.H.: Physical Description of a Viscoelastically Loaded at-Cut Quartz Resonator. J. Appl. Phys. 68(5), 1993–2001 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    Voinova, M.V., Rodahl, M., Jonson, M., Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys. Scr. 59(5), 391–396 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Johannsmann, D., Mathauer, K., Wegner, G., Knoll, W.: Viscoelastic properties of thin-films probed with a quartz-crystal resonator. Phys. Rev. B 46(12), 7808–7815 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Bandey, H.L., Martin, S.J., Cernosek, R.W., Hillman, A.R.: Modeling the responses of thickness-shear mode resonators under various loading conditions. Anal. Chem. 71(11), 2205–2214 (1999)CrossRefGoogle Scholar
  10. 10.
    Nakamoto, T., Moriizumi, T.: A theory of a quartz crystal microbalance based upon a mason equivalent-circuit. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 29(5), 963–969 (1990)Google Scholar
  11. 11.
    Mason, W.P.: Piezoelectric crystals and their applications to ultrasonics. Princeton, Van Nostrand (1948)Google Scholar
  12. 12.
    Kanazawa, K.K., Gordon, J.G.: Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57(8), 1770–1771 (1985)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Yeh, P.: Optical Waves in Layered Media. Wiley, New York (2005)Google Scholar
  15. 15.
    Katsidis, C.C., Siapkas, D.I.: General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41(19), 3978–3987 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Salomaki, M., Loikas, K., Kankare, J.: Effect of polyelectrolyte multilayers on the response of a quartz crystal microbalance. Anal. Chem. 75(21), 5895–5904 (2003)CrossRefGoogle Scholar
  17. 17.
    Mason, W.P., Baker, W.O., McSkimin, H.J., Heiss, J.H.: Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys. Rev. 75(6), 936–946 (1949)ADSCrossRefGoogle Scholar
  18. 18.
    Alig, I., Lellinger, D., Sulimma, J., Tadjbakhsch, S.: Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films. Rev. Sci. Instrum. 68(3), 1536–1542 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Azzam, R.M.A., Bashara, N.M.: Ellipsometry and Polarized Light. Springer, New York (1987)Google Scholar
  20. 20.
    Lekner, J.: Theory of Reflection of Electromagnetic and Particle Waves. Springer, Dordrecht (1987)Google Scholar
  21. 21.
    Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRefGoogle Scholar
  22. 22.
    Thurston, R.N.: Piezoelectrically excited vibrations. In: Truesdell, C. (ed.) Mechanics of Solids, vol. 4, p. 257. Springer, Heidelberg (1984)Google Scholar
  23. 23.
    Royer, D., Dieulesaint, E.: Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications. Springer, New York (1999)Google Scholar
  24. 24.
    Ulaby, F.T.: Fundamentals of Applied Electromagnetics. Prentice Hall, Upper Saddle River (2010)Google Scholar
  25. 25.
  26. 26.
    Granstaff, V.E., Martin, S.J.: Characterization of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers. J. Appl. Phys. 75(3), 1319–1329 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    Butterworth, S.: On electrically-maintained vibrations. Proc. Phys. Soc. London 27, 410 (1914)CrossRefGoogle Scholar
  28. 28.
    Dyke, K.V.: The piezo-electric resonator and its equivalent network. Proc. Inst. Radio Engin. 16(6), 742 (1928)Google Scholar
  29. 29.
    Calvo, E.J., Etchenique, R., Bartlett, P.N., Singhal, K., Santamaria, C.: Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films. Faraday Discuss. 107, 141–157 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Rast, S., Wattinger, C., Gysin, U., Meyer, E.: The noise of cantilevers. Nanotechnology 11(3), 169–172 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Lee, I., Lee, J.: Measurement uncertainties in resonant characteristics of MEMS resonators. J. Mech. Sci. Technol. 27(2), 491–500 (2013)CrossRefGoogle Scholar
  32. 32.
  33. 33.
    http://txccrystal.com/term.html. Accessed 10 Aug 2013
  34. 34.
    Horowitz, P., Hill, W.: The Art of Electronics. Cambridge University Press, Cambridge (1989)Google Scholar
  35. 35.
    Gottlieb, I.M.: Practical Oscillator Handbook. Newnes, Oxford (1997)Google Scholar
  36. 36.
    Pechhold, W.: Zur Behandlung von Anregungs- und Störungsproblemen bei akustischen Resonatoren. Acustica 9, 48–56 (1959)Google Scholar
  37. 37.
    Arnau, A.: Piezoelectric Transducers and Applications. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  38. 38.
    Johannsmann, D.: Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys. Chem. Chem. Phys. 10(31), 4516–4534 (2008)CrossRefGoogle Scholar
  39. 39.
    Berg, S., Johannsmann, D.: Laterally coupled quartz resonators. Anal. Chem. 73(6), 1140–1145 (2001)CrossRefGoogle Scholar
  40. 40.
    Dybwad, G.L.: A sensitive new method for the determination of adhesive bonding between a particle and a substrate. J. Appl. Phys. 58(7), 2789–2790 (1985)ADSCrossRefGoogle Scholar
  41. 41.
    Mason, W.P.: Electrical and mechanical analogies. Bell Syst. Tech. J. 20, 405–414 (1941)CrossRefGoogle Scholar
  42. 42.
    Meyers, M.A., Chawla, K.K.: Mechanical Behavior of Materials. Cambridge University Press, Cambridge (2008)Google Scholar
  43. 43.
  44. 44.
    Gileadi, E.: Physical Electrochemistry: Fundamentals. A Textbook for Students of Science and Engineering, Techniques and Applications. Wiley, New York (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Physical ChemistryClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations