Methods of Read-Out

Chapter
Part of the Soft and Biological Matter book series (SOBIMA)

Abstract

Resonance frequency and resonance bandwidth can be interrogated in three different ways, which are based on oscillator circuits, impedance analysis, and ring down. The techniques are described and compared.

Notes

Glossary

Variable

Definition (Comments)

Bel

Electrical susceptance

C0

Parallel capacitance (see Sect. 4.5.3)

C1

Motional capacitance (see Sect. 4.5.3)

el

As a subscript: electrical

f

Frequency

fosc

Oscillation frequency

fr

Resonance frequency

fs

Series resonance frequency (same as resonance frequency in this book)

Gel

Electrical conductance

L1

Motional inductance (see Sect. 4.5.3)

R1

Motional resistance (see Sect. 4.5.3)

RL

Load resistance

t

Time

U~

AC-voltage

el

Electrical admittance (el = Gel + iBel)

el

Electrical impedance (el = 1/el)

Δ

As a prefix: a shift induced by the presence of a sample

Δf

Shift of resonance frequency (might have been called Δfr; the index r was dropped for brevity)

ΔΓ

Shift of the half-bandwidth (might have been called ΔΓr; the index r was dropped for brevity)

Γ

Half-bandwidth (2πΓ: decay rate in a ring-down experiment)

ω

Angular frequency

References

  1. 1.
    Arnau, A.: Piezoelectric Transducers and Applications. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Gottlieb, I.M.: Practical Oscillator Handbook. Newnes, Boston (1997)Google Scholar
  3. 3.
    http://txccrystal.com/term.html. Accessed 10 Aug 2013
  4. 4.
  5. 5.
    Montagut, Y.J., Garcia, J.V., Jimenez, Y., March, C., Montoya, A., Arnau, A.: Frequency-shift versus phase-shift characterization of in-liquid quartz crystal microbalance applications. Rev. Sci. Instrum. 82(6), 064702 (2011)Google Scholar
  6. 6.
    Rubiola, E., Giordano, V.: On the 1/f frequency noise in ultra-stable quartz oscillators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(1), 15–22 (2007)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Beck, R., Pittermann, U., Weil, K.G.: Impedance Analysis of Quartz Oscillators, Contacted on One Side with a Liquid. Ber. Bunsen Phys. Chem. Chem. Phys. 92(11), 1363–1368 (1988)CrossRefGoogle Scholar
  9. 9.
    Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., Buttgenbach, S.: Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sens. Actuators B Chem. 76(1–3), 47–57 (2001)CrossRefGoogle Scholar
  10. 10.
    Calvo, E.J., Etchenique, R., Bartlett, P.N., Singhal, K., Santamaria, C.: Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films. Faraday Discuss. 107, 141–157 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Kankare, J., Loilkas, K., Salomaki, M.: Method for measuring the losses and loading of a quartz crystal microbalance. Anal. Chem. 78(6), 1875–1882 (2006)CrossRefGoogle Scholar
  12. 12.
    Auge, J., Dierks, K., Eichelbaum, F., Hauptmann, P.: High-speed multi-parameter data acquisition and web-based remote access to resonant sensors and sensor arrays. Sens. Actuators B Chem. 95(1–3), 32–38 (2003)CrossRefGoogle Scholar
  13. 13.
    http://n2pk.com/. Accessed 29 Nov 2013, http://www.makarov.ca/vna.htm. Accessed 29 Nov 2013
  14. 14.
  15. 15.
    Arnau, A.: A review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors 8(1), 370–411 (2008)CrossRefGoogle Scholar
  16. 16.
    Sittel, K., Rouse, P.E., Bailey, E.D.: Method for determining the viscoelastic properties of dilute polymer solutions at audio-frequencies. J. Appl. Phys. 25(10), 1312–1320 (1954)ADSCrossRefGoogle Scholar
  17. 17.
    Hirao, M., Ogi, H., Fukuoka, H.: Resonance emat system for acoustoelastic stress measurement in sheet metals. Rev. Sci. Instrum. 64(11), 3198–3205 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    Rodahl, M., Hook, F., Krozer, A., Brzezinski, P., Kasemo, B.: Quartz-crystal microbalance setup for frequency and q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66(7), 3924–3930 (1995)ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    Lucklum, R., Eichelbaum, F.: Interface circuits for QCM sensors. In: Steinem, C., Janshoff, A. (eds.) Piezoelectric Sensors, vol. 5, pp. 3–47. Springer, New York (2007)Google Scholar
  21. 21.
    Resa, P., Castro, P., Rodriguez-Lopez, J., Elvira, L.: Broadband spike excitation method for in-liquid QCM sensors. Sens. Actuators B Chem. 166, 275–280 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Physical ChemistryClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations