Combined Instruments

  • Diethelm JohannsmannEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


The QCM is often combined with other techniques of interface analysis. In some cases, doing that in situ is straight-forward. An example is the electrochemical QCM (EQCM). The combination with optical reflectometry is particularly interesting because the data analysis proceeds along similar lines, but still often leads to an effective optical thickness, which is lower than the Sauerbrey thickness.


Surface Plasmon Resonance Frequency Shift Optical Thickness Contrast Function Resonator Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.




Definition (Comments)


Contact radius


As an index: ambient medium


Effective area of the resonator plate


Speed of propagation, speed of light


Film thickness




As an index: film


Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

\( \tilde{G} \)

Shear modulus (\( \tilde{G} = G^{{\prime }} + {\text{i}}G^{{\prime \prime }} \))


Effective shear modulus (Eq.  11.2.12)


Wavenumber of surface plasmon


x-component of the wavenumber of the incident beam


As an index: liquid (mostly the ambient medium)


Overtone order

\( \tilde{n} \)

Refractive index


As an index: plasmon


Quality factor


A reflectivity curve. (In SPR spectroscopy, R is the reflected intensity; θ is the angle of incidence.)


As an index: substrate (mostly a metal film)


Spatial coordinate along the surface normal

\( \tilde{Z} \)

Acoustic wave impedance


Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)


Imaginary part of a resonance frequency


As a prefix: A shift induced by the presence of the sample

\( {\tilde{\varepsilon}} \)

Dielectric constant optical frequencies (\( {\tilde{\varepsilon } = }\tilde{n}^{2} \))




Spring constant of a contact with a particle




Wavelength of a corrugation grating (Eq. 16.2.1)


Angle of incidence




Angular frequency


  1. 1.
    Bund, A., Schwitzgebel, G.: Investigations on metal depositions and dissolutions with an improved EQCMB based on quartz crystal impedance measurements. Electrochim. Acta 45(22–23), 3703–3710 (2000)CrossRefGoogle Scholar
  2. 2.
    Nomura, T., Okuhara, M.: Frequency shifts of piezoelectric quartz crystals immersed in organic liquids. Anal. Chim. Acta 142, 281–284 (1982)Google Scholar
  3. 3.
    Nomura, T., Hattori, O.: Determination of micromolar concentrations of cyanide in solution with a piezoelectric detector. Anal. Chim. Acta 115, 323–326 (1980)Google Scholar
  4. 4.
    Buttry, D.A., Ward, M.D.: Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92(6), 1355–1379 (1992)CrossRefGoogle Scholar
  5. 5.
    Schumacher, R.: The quartz microbalance—a novel-approach to the insitu investigation of interfacial phenomena at the solid liquid junction. Angew. Chem. Int Ed. Engl. 29(4), 329–343 (1990)CrossRefGoogle Scholar
  6. 6.
    Marx, KA.: The quartz crystal microbalance and the electrochemical QCM: applications to studies of thin polymer films, electron transfer systems, biological macromolecules, biosensors, and cells. In: Janshoff, A., Steinem, C. (eds.) Piezolelectric Sensors, pp. 371–424. Springer, Berlin (2007)Google Scholar
  7. 7.
    Daikhin, L.; Tsionsky, V.; Gileadi, E.; Urbakh, M.: Looking at the metal/solution interface with the electrochemical quartz crystal microbalance: theory and experiment. In: Bard, A. J., Rubinstein, I., (eds.) Electroanalytical Chemistry: A Series of Advances, pp. 1–99. Marcel Dekker Inc, New York (2003)Google Scholar
  8. 8.
    Doblhofer, K., Weil, K.G.: Application of the quartz microbalance in electrochemistry. Bunsen Mag. 9, 162 (2007)Google Scholar
  9. 9.
    Hillman, A.R.: The EQCM: electrogravimetry with a light touch. J. Solid State Electrochem. 15(7–8), 1647–1660Google Scholar
  10. 10.
    Kochman, A., Krupka, A., Grissbach, J., Kutner, W., Gniewinska, B., Nafalski, L.: Design and performance of a new thin-layer radial-flow holder for a quartz crystal resonator of an electrochemical quartz crystal microbalance. Electroanalysis 18(22), 2168–2173 (2006)CrossRefGoogle Scholar
  11. 11.
    Tsionsky, V., Daikhin, L., Gileadi, E.: Response of the electrochemical quartz crystal microbalance for gold electrodes in the double-layer region. J. Electrochem. Soc. 143(7), 2240–2245 (1996)CrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    Bruckenstein, S., Shay, M.: Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim. Acta 30(10), 1295–1300 (1985)CrossRefGoogle Scholar
  15. 15.
    Hillman, A.R., Efimov, I., Ryder, K.S.: Time-scale- and temperature-dependent mechanical properties of viscoelastic poly(3,4-ethylenedioxythlophene) films. J. Am. Chem. Soc. 127(47), 16611–16620 (2005)CrossRefGoogle Scholar
  16. 16.
    Wudy, F., Multerer, M., Stock, C., Schmeer, G., Gores, H.J.: Rapid impedance scanning QCM for electrochemical applications based on miniaturized hardware and high-performance curve fitting. Electrochim. Acta 53(22), 6568–6574 (2008)CrossRefGoogle Scholar
  17. 17.
    Wickman, B., Gronbeck, H., Hanarp, P., Kasemo, B.: Corrosion induced degradation of Pt/C model electrodes measured with electrochemical quartz crystal microbalance. J. Electrochem. Soc. 157(4), B592–B598 (2010)CrossRefGoogle Scholar
  18. 18.
    Düwel, M.: Diploma thesis, Clausthal University of Technology (2007)Google Scholar
  19. 19.
    Compton, R.G., Eklund, J.C., Marken, F.: Sonoelectrochemical processes: a review. Electroanalysis 9(7), 509–522 (1997)CrossRefGoogle Scholar
  20. 20.
    Schneider, O., Matic, S., Argirusis, C.: Application of the electrochemical quartz crystal microbalance technique to copper sonoelectrochemistry—part 1. Sulfate-based electrolytes. Electrochim. Acta 53(17), 5485–5495 (2008)CrossRefGoogle Scholar
  21. 21.
    Domack, A., Prucker, O., Ruhe, J., Johannsmann, D.: Swelling of a polymer brush probed with a quartz crystal resonator. Phys. Rev. E 56(1), 680–689 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Plunkett, M.A., Wang, Z.H., Rutland, M.W., Johannsmann, D.: Adsorption of pNIPAM layers on hydrophobic gold surfaces, measured in situ by QCM and SPR. Langmuir 19(17), 6837–6844 (2003)CrossRefGoogle Scholar
  23. 23.
    Bingen, P., Wang, G., Steinmetz, N.F., Rodahl, M., Richter, R.P.: Solvation effects in the quartz crystal microbalance with dissipation monitoring response to biomolecular adsorption. A phenomenological approach. Anal. Chem. 80(23), 8880–8890 (2008)CrossRefGoogle Scholar
  24. 24.
    Wang, Z.H., Kuckling, D., Johannsmann, D.: Temperature-induced swelling and de-swelling of thin poly(N-isopropylacrylamide) gels in water: combined acoustic and optical measurements. Soft Mater. 1(3), 353–364 (2003)CrossRefGoogle Scholar
  25. 25.
    Wang, G., Rodahl, M., Edvardsson, M., Svedhem, S., Ohlsson, G., Hook, F., Kasemo, B.: A combined reflectometry and quartz crystal microbalance with dissipation setup for surface interaction studies. Rev. Sci. Instrum. 79(7), 075107 (2008)Google Scholar
  26. 26.
    Edvardsson, M., Svedhem, S., Wang, G., Richter, R., Rodahl, M., Kasemo, B.: QCM-D and reflectometry instrument: applications to supported lipid structures and their biomolecular interactions. Anal. Chem. 81(1), 349–361 (2009)CrossRefGoogle Scholar
  27. 27.
    Azzam, R.M.A., Bashara, N.M.: Ellipsometry and Polarized Light. Springer, New York (1987)Google Scholar
  28. 28.
    Lekner, J.: Theory of Reflection of Electromagnetic and Particle Waves. Springer, New York (1987)Google Scholar
  29. 29.
    Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRefGoogle Scholar
  30. 30.
    Bodvik, R., Macakova, L., Karlson, L., Thormann, E., Claesson, P.: Temperature-dependent competition between adsorption and aggregation of a cellulose ether-simultaneous use of optical and acoustical techniques for investigating surface properties. Langmuir 28(25), 9515–9525 (2012)CrossRefGoogle Scholar
  31. 31.
    Tiefenthaler, K., Lukosz, W.: Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B Opt. Phys. 6(2), 209–220 (1989)ADSCrossRefGoogle Scholar
  32. 32. Accessed 13 June 2013
  33. 33.
    Laschitsch, A., Menges, B., Johannsmann, D.: Simultaneous determination of optical and acoustic thicknesses of protein layers using surface plasmon resonance spectroscopy and quartz crystal microweighing. Appl. Phys. Lett. 77(14), 2252–2254 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Bailey, L.E., Kambhampati, D., Kanazawa, K.K., Knoll, W., Frank, C.W.: Using surface plasmon resonance and the quartz crystal microbalance to monitor in situ the interfacial behavior of thin organic films. Langmuir 18(2), 479–489 (2002)CrossRefGoogle Scholar
  35. 35.
    Zong, Y., Xu, F., Su, X.D., Knoll, W.: Quartz crystal microbalance with integrated surface plasmon grating coupler. Anal. Chem. 80(13), 5246–5250 (2008)CrossRefGoogle Scholar
  36. 36.
    Worgull, M.: Hot Embossing: Theory and Technology of Microreplication. Elsevier, Amsterdam (2008)Google Scholar
  37. 37.
    Francis, L.A., Friedt, J.M., Zhou, C., Bertrand, P.: In situ evaluation of density, viscosity, and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance. Anal. Chem. 78(12), 4200–4209 (2006)CrossRefGoogle Scholar
  38. 38.
    Kretschmann, E.: Determination of optical constants of metals by excitation of surface plasmons. Zeitschrift Fur Physik 241(4), 313 (1971)Google Scholar
  39. 39.
    Pockrand, I.: Surface plasma-oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72(3), 577–588 (1978)ADSCrossRefGoogle Scholar
  40. 40.
    Lekner, J.: Invariant formulation of the reflection of long waves by interfaces. Phys. A 128(1–2), 229–252 (1984)CrossRefGoogle Scholar
  41. 41.
    Carton, I., Brisson, A.R., Richter, R.P.: Label-free detection of clustering of membrane-bound proteins. Anal. Chem. 82(22), 9275–9281 (2010)CrossRefGoogle Scholar
  42. 42.
    Friedt, J.M., Choi, K.H., Frederix, F., Campitelli, A.: Simultaneous AFM and QCM measurements—methodology validation using electrodeposition. J. Electrochem. Soc. 150(10), H229–H234 (2003)CrossRefGoogle Scholar
  43. 43.
    Bund, A., Schneider, O., Dehnke, V.: Combining AFM and EQCM for the in situ investigation of surface roughness effects during electrochemical metal depositions. Phys. Chem. Chem. Phys. 4(15), 3552–3554 (2002)CrossRefGoogle Scholar
  44. 44.
    Hayden, O., Bindeus, R., Dickert, F.L.: Combining atomic force microscope and quartz crystal microbalance studies for cell detection. Meas. Sci. Technol. 14(11), 1876–1881 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Kim, J.M., Chang, S.M., Muramatsu, H.: Scanning localized viscoelastic image using a quartz crystal resonator combined with an atomic force microscopy. Appl. Phys. Lett. 74(3), 466–468 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    Sasaki, A., Katsumata, A., Iwata, F., Aoyama, H.: Scanning shearing-stress microscope. Appl. Phys. Lett. 64(1), 124–125 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    Sasaki, A., Katsumata, A., Iwata, F., Aoyama, H.: Scanning shearing-stress microscopy of gold thin-films. Jpn. J. Appl. Phys. Part 2 Lett. 33(4A), L547–L549 (1994)Google Scholar
  48. 48.
    Yamada, R., Ye, S., Uosaki, K.: Novel scanning probe microscope for local elasticity measurement. Jpn. J. Appl. Phys. Part 2 Lett. 35(7A), L846–L848 (1996)Google Scholar
  49. 49.
    Borovsky, B., Krim, J., Syed Asif, S.A., Wahl, K.J.: Measuring nanomechanical properties of a dynamic contact using an indenter probe and quartz crystal microbalance. J. Appl. Phys. 90(12), 6391–6396 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    Friedt, J.M., Choi, K.H., Francis, L., Campitelli, A.: Simultaneous atomic force microscope and quartz crystal microbalance measurements: Interactions and displacement field of a quartz crystal microbalance. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 41(6A), 3974–3977 (2002)Google Scholar
  51. 51.
    Lubben, J.F., Johannsmann, D.: Nanoscale high-frequency contact mechanics using an AFM tip and a quartz crystal resonator. Langmuir 20(9), 3698–3703 (2004)CrossRefGoogle Scholar
  52. 52.
    Inoue, D., Machida, S., Taniguchi, J., Suzuki, M., Ishikawa, M., Miura, K.: Dynamical frictional force of nanoscale sliding. Phys. Rev. B 86(11), 4 (2012)Google Scholar
  53. 53.
    Scherer, V., Arnold, W., Bhushan, B.: Lateral force microscopy using acoustic friction force microscopy. Surf. Interface Anal. 27(5–6), 578–587 (1999)CrossRefGoogle Scholar
  54. 54.
    Krotil, H.U., Weilandt, E., Stifter, T., Marti, O., Hild, S.: Dynamic friction force measurement with the scanning force microscope. Surf. Interface Anal. 27(5–6), 341–347 (1999)CrossRefGoogle Scholar
  55. 55.
    Jersch, J., Maletzky, T., Fuchs, H.: Interface circuits for quartz crystal sensors in scanning probe microscopy applications. Rev. Sci. Instrum. 77(8), 083701 (2006) Google Scholar
  56. 56.
    Günther, P., Fischer, U., Dransfeld, K.: Scanning near-field acoustic microscopy. Appl. Phys. B Photophys. Laser Chem. 48(1), 89–92 (1989)ADSCrossRefGoogle Scholar
  57. 57.
  58. 58.
    Giessibl, F.J.: A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl. Phys. Lett. 78(1), 123–125 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    Hölscher, H., Schwarz, U.D., Wiesendanger, R.: Calculation of the frequency shift in dynamic force microscopy. Appl. Surf. Sci. 140(3–4), 344–351 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, London (2011)Google Scholar
  61. 61.
    Berg, S., Ruths, M., Johannsmann, D.: Quartz crystal resonators with atomically smooth surfaces for use in contact mechanics. Rev. Sci. Instrum. 74(8), 3845–3852 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    Berg, S., Ruths, M., Johannsmann, D.: High-frequency measurements of interfacial friction using quartz crystal resonators integrated into a surface forces apparatus. Phys. Rev. E 65(2), 026119 (2002)Google Scholar
  63. 63.
    Xu, B., Wang, H.D., Wang, Y., Zhu, G.Y., Li, Z., Wang, E.K.: A mica-modified quartz resonator for a quartz crystal microbalance study. Anal. Sci. 16(10), 1061–1063 (2000)CrossRefGoogle Scholar
  64. 64.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and contact of elastic solids. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 324(1558), 301 (1971)Google Scholar
  65. 65.
    Flanigan, C.M., Desai, M., Shull, K.R.: Contact mechanics studies with the quartz crystal microbalance. Langmuir 16(25), 9825–9829 (2000)CrossRefGoogle Scholar
  66. 66.
    Zhang, J., Hu, J.Q., Zhu, F.R., Gong, H., O’Shea, S.J.: ITO thin films coated quartz crystal microbalance as gas sensor for NO detection. Sens. Actuators B Chem. 87(1), 159–167 (2002)CrossRefGoogle Scholar
  67. 67.
    ITO coated resonator crystals are available from microvacuum:
  68. 68.
    Larsson, E.M., Edvardsson, M.E.M., Langhammer, C., Zoric, I., Kasemo, B.: A combined nanoplasmonic and electrodeless quartz crystal microbalance setup. Rev. Sci. Instrum. 80(12), 10 (2009)Google Scholar
  69. 69.
  70. 70.
    Smith, A.L., Mulligan, R.B., Shirazi, H.M.: Determining the effects of vapor sorption in polymers with the quartz crystal microbalance/heat conduction calorimeter. J. Polym. Sci. Part B Polym. Phys. 42(21), 3893–3906 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    Smith, A.L., Shirazi, H.M., Smith, F.C.: Real-time monitoring of catalytic surfaces using a mass/heat flow sensor: hydrogenation of ethylene on platinum and palladium. Catal. Lett. 104(3–4), 199–204 (2005)CrossRefGoogle Scholar
  72. 72.
    Yu, G.Y., Hunt, W.D., Josowicz, M., Janata, J.: Development of a magnetic quartz crystal microbalance. Rev. Sci. Instrum. 78(6) (2007)Google Scholar
  73. 73.
    Vavra, K.C., Yu, G., Josowicz, M., Janata, J.: Magnetic quartz crystal microbalance: magneto-acoustic parameters. J. Appl. Phys. 110(1), 013905-1 (2011)Google Scholar
  74. 74.
    Sabot, A., Krause, S.: Simultaneous quartz crystal microbalance impedance and electrochemical impedance measurements.Investigation into the degradation of thin polymer films. Anal. Chem. 74(14), 3304–3311 (2002)CrossRefGoogle Scholar
  75. 75.
    Briand, E., Zach, M., Svedhem, S., Kasemo, B., Petronis, S.: Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides. Analyst 135(2), 343–350 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    Paul, D.W., Clark, S.R., Beeler, T.L.: Instrumentation for simultaneous measurement of double-layer capacitance and solution resistance at a QCM electrode. Sens. Actuators B Chem. 17(3), 247–255 (1994)CrossRefGoogle Scholar
  77. 77.
    Roth, M., Dera, T., Drost, A., Hartinger, R., Wendler, F., Endres, H.E., Hillerich, B.: Directly heated quartz crystal microbalance with an integrated dielectric sensor. Sens. Actuators A Phys. 68(1–3), 399–403 (1998)CrossRefGoogle Scholar
  78. 78.
    Heitmann, V., Reiss, B., Wegener, J.; The quartz crystal microbalance in cell biology: basics and applications. In: Steinem, C., Janshoff, A. (eds.) Piezoelectric Sensors. Springer, Berlin (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Physical ChemistryClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations