Combined Instruments

Chapter
Part of the Soft and Biological Matter book series (SOBIMA)

Abstract

The QCM is often combined with other techniques of interface analysis. In some cases, doing that in situ is straight-forward. An example is the electrochemical QCM (EQCM). The combination with optical reflectometry is particularly interesting because the data analysis proceeds along similar lines, but still often leads to an effective optical thickness, which is lower than the Sauerbrey thickness.

Keywords

Surface Plasmon Resonance Frequency Shift Optical Thickness Contrast Function Resonator Surface

Glossary

Variable

a

amb

As an index: ambient medium

A

Effective area of the resonator plate

c

Speed of propagation, speed of light

df

Film thickness

f

Frequency

f

As an index: film

f0

Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

$$\tilde{G}$$

Shear modulus ($$\tilde{G} = G^{{\prime }} + {\text{i}}G^{{\prime \prime }}$$)

G*

Effective shear modulus (Eq. )

kpl

Wavenumber of surface plasmon

kx

x-component of the wavenumber of the incident beam

liq

As an index: liquid (mostly the ambient medium)

n

Overtone order

$$\tilde{n}$$

Refractive index

pl

As an index: plasmon

Q

Quality factor

R(θ)

A reflectivity curve. (In SPR spectroscopy, R is the reflected intensity; θ is the angle of incidence.)

sub

As an index: substrate (mostly a metal film)

z

Spatial coordinate along the surface normal

$$\tilde{Z}$$

Acoustic wave impedance

Zq

Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)

Γ

Imaginary part of a resonance frequency

Δ

As a prefix: A shift induced by the presence of the sample

$${\tilde{\varepsilon}}$$

Dielectric constant optical frequencies ($${\tilde{\varepsilon } = }\tilde{n}^{2}$$)

η

Viscosity

κP

Spring constant of a contact with a particle

λ

Wavelength

Λ

Wavelength of a corrugation grating (Eq. 16.2.1)

θ

Angle of incidence

ρ

Density

ω

Angular frequency

References

1. 1.
Bund, A., Schwitzgebel, G.: Investigations on metal depositions and dissolutions with an improved EQCMB based on quartz crystal impedance measurements. Electrochim. Acta 45(22–23), 3703–3710 (2000)
2. 2.
Nomura, T., Okuhara, M.: Frequency shifts of piezoelectric quartz crystals immersed in organic liquids. Anal. Chim. Acta 142, 281–284 (1982)Google Scholar
3. 3.
Nomura, T., Hattori, O.: Determination of micromolar concentrations of cyanide in solution with a piezoelectric detector. Anal. Chim. Acta 115, 323–326 (1980)Google Scholar
4. 4.
Buttry, D.A., Ward, M.D.: Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92(6), 1355–1379 (1992)
5. 5.
Schumacher, R.: The quartz microbalance—a novel-approach to the insitu investigation of interfacial phenomena at the solid liquid junction. Angew. Chem. Int Ed. Engl. 29(4), 329–343 (1990)
6. 6.
Marx, KA.: The quartz crystal microbalance and the electrochemical QCM: applications to studies of thin polymer films, electron transfer systems, biological macromolecules, biosensors, and cells. In: Janshoff, A., Steinem, C. (eds.) Piezolelectric Sensors, pp. 371–424. Springer, Berlin (2007)Google Scholar
7. 7.
Daikhin, L.; Tsionsky, V.; Gileadi, E.; Urbakh, M.: Looking at the metal/solution interface with the electrochemical quartz crystal microbalance: theory and experiment. In: Bard, A. J., Rubinstein, I., (eds.) Electroanalytical Chemistry: A Series of Advances, pp. 1–99. Marcel Dekker Inc, New York (2003)Google Scholar
8. 8.
Doblhofer, K., Weil, K.G.: Application of the quartz microbalance in electrochemistry. Bunsen Mag. 9, 162 (2007)Google Scholar
9. 9.
Hillman, A.R.: The EQCM: electrogravimetry with a light touch. J. Solid State Electrochem. 15(7–8), 1647–1660Google Scholar
10. 10.
Kochman, A., Krupka, A., Grissbach, J., Kutner, W., Gniewinska, B., Nafalski, L.: Design and performance of a new thin-layer radial-flow holder for a quartz crystal resonator of an electrochemical quartz crystal microbalance. Electroanalysis 18(22), 2168–2173 (2006)
11. 11.
Tsionsky, V., Daikhin, L., Gileadi, E.: Response of the electrochemical quartz crystal microbalance for gold electrodes in the double-layer region. J. Electrochem. Soc. 143(7), 2240–2245 (1996)
12. 12.
13. 13.
14. 14.
Bruckenstein, S., Shay, M.: Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim. Acta 30(10), 1295–1300 (1985)
15. 15.
Hillman, A.R., Efimov, I., Ryder, K.S.: Time-scale- and temperature-dependent mechanical properties of viscoelastic poly(3,4-ethylenedioxythlophene) films. J. Am. Chem. Soc. 127(47), 16611–16620 (2005)
16. 16.
Wudy, F., Multerer, M., Stock, C., Schmeer, G., Gores, H.J.: Rapid impedance scanning QCM for electrochemical applications based on miniaturized hardware and high-performance curve fitting. Electrochim. Acta 53(22), 6568–6574 (2008)
17. 17.
Wickman, B., Gronbeck, H., Hanarp, P., Kasemo, B.: Corrosion induced degradation of Pt/C model electrodes measured with electrochemical quartz crystal microbalance. J. Electrochem. Soc. 157(4), B592–B598 (2010)
18. 18.
Düwel, M.: Diploma thesis, Clausthal University of Technology (2007)Google Scholar
19. 19.
Compton, R.G., Eklund, J.C., Marken, F.: Sonoelectrochemical processes: a review. Electroanalysis 9(7), 509–522 (1997)
20. 20.
Schneider, O., Matic, S., Argirusis, C.: Application of the electrochemical quartz crystal microbalance technique to copper sonoelectrochemistry—part 1. Sulfate-based electrolytes. Electrochim. Acta 53(17), 5485–5495 (2008)
21. 21.
Domack, A., Prucker, O., Ruhe, J., Johannsmann, D.: Swelling of a polymer brush probed with a quartz crystal resonator. Phys. Rev. E 56(1), 680–689 (1997)
22. 22.
Plunkett, M.A., Wang, Z.H., Rutland, M.W., Johannsmann, D.: Adsorption of pNIPAM layers on hydrophobic gold surfaces, measured in situ by QCM and SPR. Langmuir 19(17), 6837–6844 (2003)
23. 23.
Bingen, P., Wang, G., Steinmetz, N.F., Rodahl, M., Richter, R.P.: Solvation effects in the quartz crystal microbalance with dissipation monitoring response to biomolecular adsorption. A phenomenological approach. Anal. Chem. 80(23), 8880–8890 (2008)
24. 24.
Wang, Z.H., Kuckling, D., Johannsmann, D.: Temperature-induced swelling and de-swelling of thin poly(N-isopropylacrylamide) gels in water: combined acoustic and optical measurements. Soft Mater. 1(3), 353–364 (2003)
25. 25.
Wang, G., Rodahl, M., Edvardsson, M., Svedhem, S., Ohlsson, G., Hook, F., Kasemo, B.: A combined reflectometry and quartz crystal microbalance with dissipation setup for surface interaction studies. Rev. Sci. Instrum. 79(7), 075107 (2008)Google Scholar
26. 26.
Edvardsson, M., Svedhem, S., Wang, G., Richter, R., Rodahl, M., Kasemo, B.: QCM-D and reflectometry instrument: applications to supported lipid structures and their biomolecular interactions. Anal. Chem. 81(1), 349–361 (2009)
27. 27.
Azzam, R.M.A., Bashara, N.M.: Ellipsometry and Polarized Light. Springer, New York (1987)Google Scholar
28. 28.
Lekner, J.: Theory of Reflection of Electromagnetic and Particle Waves. Springer, New York (1987)Google Scholar
29. 29.
Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)
30. 30.
Bodvik, R., Macakova, L., Karlson, L., Thormann, E., Claesson, P.: Temperature-dependent competition between adsorption and aggregation of a cellulose ether-simultaneous use of optical and acoustical techniques for investigating surface properties. Langmuir 28(25), 9515–9525 (2012)
31. 31.
Tiefenthaler, K., Lukosz, W.: Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B Opt. Phys. 6(2), 209–220 (1989)
32. 32.
http://www.owls-sensors.com/. Accessed 13 June 2013
33. 33.
Laschitsch, A., Menges, B., Johannsmann, D.: Simultaneous determination of optical and acoustic thicknesses of protein layers using surface plasmon resonance spectroscopy and quartz crystal microweighing. Appl. Phys. Lett. 77(14), 2252–2254 (2000)
34. 34.
Bailey, L.E., Kambhampati, D., Kanazawa, K.K., Knoll, W., Frank, C.W.: Using surface plasmon resonance and the quartz crystal microbalance to monitor in situ the interfacial behavior of thin organic films. Langmuir 18(2), 479–489 (2002)
35. 35.
Zong, Y., Xu, F., Su, X.D., Knoll, W.: Quartz crystal microbalance with integrated surface plasmon grating coupler. Anal. Chem. 80(13), 5246–5250 (2008)
36. 36.
Worgull, M.: Hot Embossing: Theory and Technology of Microreplication. Elsevier, Amsterdam (2008)Google Scholar
37. 37.
Francis, L.A., Friedt, J.M., Zhou, C., Bertrand, P.: In situ evaluation of density, viscosity, and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance. Anal. Chem. 78(12), 4200–4209 (2006)
38. 38.
Kretschmann, E.: Determination of optical constants of metals by excitation of surface plasmons. Zeitschrift Fur Physik 241(4), 313 (1971)Google Scholar
39. 39.
Pockrand, I.: Surface plasma-oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72(3), 577–588 (1978)
40. 40.
Lekner, J.: Invariant formulation of the reflection of long waves by interfaces. Phys. A 128(1–2), 229–252 (1984)
41. 41.
Carton, I., Brisson, A.R., Richter, R.P.: Label-free detection of clustering of membrane-bound proteins. Anal. Chem. 82(22), 9275–9281 (2010)
42. 42.
Friedt, J.M., Choi, K.H., Frederix, F., Campitelli, A.: Simultaneous AFM and QCM measurements—methodology validation using electrodeposition. J. Electrochem. Soc. 150(10), H229–H234 (2003)
43. 43.
Bund, A., Schneider, O., Dehnke, V.: Combining AFM and EQCM for the in situ investigation of surface roughness effects during electrochemical metal depositions. Phys. Chem. Chem. Phys. 4(15), 3552–3554 (2002)
44. 44.
Hayden, O., Bindeus, R., Dickert, F.L.: Combining atomic force microscope and quartz crystal microbalance studies for cell detection. Meas. Sci. Technol. 14(11), 1876–1881 (2003)
45. 45.
Kim, J.M., Chang, S.M., Muramatsu, H.: Scanning localized viscoelastic image using a quartz crystal resonator combined with an atomic force microscopy. Appl. Phys. Lett. 74(3), 466–468 (1999)
46. 46.
Sasaki, A., Katsumata, A., Iwata, F., Aoyama, H.: Scanning shearing-stress microscope. Appl. Phys. Lett. 64(1), 124–125 (1994)
47. 47.
Sasaki, A., Katsumata, A., Iwata, F., Aoyama, H.: Scanning shearing-stress microscopy of gold thin-films. Jpn. J. Appl. Phys. Part 2 Lett. 33(4A), L547–L549 (1994)Google Scholar
48. 48.
Yamada, R., Ye, S., Uosaki, K.: Novel scanning probe microscope for local elasticity measurement. Jpn. J. Appl. Phys. Part 2 Lett. 35(7A), L846–L848 (1996)Google Scholar
49. 49.
Borovsky, B., Krim, J., Syed Asif, S.A., Wahl, K.J.: Measuring nanomechanical properties of a dynamic contact using an indenter probe and quartz crystal microbalance. J. Appl. Phys. 90(12), 6391–6396 (2001)
50. 50.
Friedt, J.M., Choi, K.H., Francis, L., Campitelli, A.: Simultaneous atomic force microscope and quartz crystal microbalance measurements: Interactions and displacement field of a quartz crystal microbalance. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 41(6A), 3974–3977 (2002)Google Scholar
51. 51.
Lubben, J.F., Johannsmann, D.: Nanoscale high-frequency contact mechanics using an AFM tip and a quartz crystal resonator. Langmuir 20(9), 3698–3703 (2004)
52. 52.
Inoue, D., Machida, S., Taniguchi, J., Suzuki, M., Ishikawa, M., Miura, K.: Dynamical frictional force of nanoscale sliding. Phys. Rev. B 86(11), 4 (2012)Google Scholar
53. 53.
Scherer, V., Arnold, W., Bhushan, B.: Lateral force microscopy using acoustic friction force microscopy. Surf. Interface Anal. 27(5–6), 578–587 (1999)
54. 54.
Krotil, H.U., Weilandt, E., Stifter, T., Marti, O., Hild, S.: Dynamic friction force measurement with the scanning force microscope. Surf. Interface Anal. 27(5–6), 341–347 (1999)
55. 55.
Jersch, J., Maletzky, T., Fuchs, H.: Interface circuits for quartz crystal sensors in scanning probe microscopy applications. Rev. Sci. Instrum. 77(8), 083701 (2006) Google Scholar
56. 56.
Günther, P., Fischer, U., Dransfeld, K.: Scanning near-field acoustic microscopy. Appl. Phys. B Photophys. Laser Chem. 48(1), 89–92 (1989)
57. 57.
58. 58.
Giessibl, F.J.: A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl. Phys. Lett. 78(1), 123–125 (2001)
59. 59.
Hölscher, H., Schwarz, U.D., Wiesendanger, R.: Calculation of the frequency shift in dynamic force microscopy. Appl. Surf. Sci. 140(3–4), 344–351 (1999)
60. 60.
61. 61.
Berg, S., Ruths, M., Johannsmann, D.: Quartz crystal resonators with atomically smooth surfaces for use in contact mechanics. Rev. Sci. Instrum. 74(8), 3845–3852 (2003)
62. 62.
Berg, S., Ruths, M., Johannsmann, D.: High-frequency measurements of interfacial friction using quartz crystal resonators integrated into a surface forces apparatus. Phys. Rev. E 65(2), 026119 (2002)Google Scholar
63. 63.
Xu, B., Wang, H.D., Wang, Y., Zhu, G.Y., Li, Z., Wang, E.K.: A mica-modified quartz resonator for a quartz crystal microbalance study. Anal. Sci. 16(10), 1061–1063 (2000)
64. 64.
Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and contact of elastic solids. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 324(1558), 301 (1971)Google Scholar
65. 65.
Flanigan, C.M., Desai, M., Shull, K.R.: Contact mechanics studies with the quartz crystal microbalance. Langmuir 16(25), 9825–9829 (2000)
66. 66.
Zhang, J., Hu, J.Q., Zhu, F.R., Gong, H., O’Shea, S.J.: ITO thin films coated quartz crystal microbalance as gas sensor for NO detection. Sens. Actuators B Chem. 87(1), 159–167 (2002)
67. 67.
ITO coated resonator crystals are available from microvacuum: http://www.microvacuum.com/
68. 68.
Larsson, E.M., Edvardsson, M.E.M., Langhammer, C., Zoric, I., Kasemo, B.: A combined nanoplasmonic and electrodeless quartz crystal microbalance setup. Rev. Sci. Instrum. 80(12), 10 (2009)Google Scholar
69. 69.
70. 70.
Smith, A.L., Mulligan, R.B., Shirazi, H.M.: Determining the effects of vapor sorption in polymers with the quartz crystal microbalance/heat conduction calorimeter. J. Polym. Sci. Part B Polym. Phys. 42(21), 3893–3906 (2004)
71. 71.
Smith, A.L., Shirazi, H.M., Smith, F.C.: Real-time monitoring of catalytic surfaces using a mass/heat flow sensor: hydrogenation of ethylene on platinum and palladium. Catal. Lett. 104(3–4), 199–204 (2005)
72. 72.
Yu, G.Y., Hunt, W.D., Josowicz, M., Janata, J.: Development of a magnetic quartz crystal microbalance. Rev. Sci. Instrum. 78(6) (2007)Google Scholar
73. 73.
Vavra, K.C., Yu, G., Josowicz, M., Janata, J.: Magnetic quartz crystal microbalance: magneto-acoustic parameters. J. Appl. Phys. 110(1), 013905-1 (2011)Google Scholar
74. 74.
Sabot, A., Krause, S.: Simultaneous quartz crystal microbalance impedance and electrochemical impedance measurements.Investigation into the degradation of thin polymer films. Anal. Chem. 74(14), 3304–3311 (2002)
75. 75.
Briand, E., Zach, M., Svedhem, S., Kasemo, B., Petronis, S.: Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides. Analyst 135(2), 343–350 (2010)
76. 76.
Paul, D.W., Clark, S.R., Beeler, T.L.: Instrumentation for simultaneous measurement of double-layer capacitance and solution resistance at a QCM electrode. Sens. Actuators B Chem. 17(3), 247–255 (1994)
77. 77.
Roth, M., Dera, T., Drost, A., Hartinger, R., Wendler, F., Endres, H.E., Hillerich, B.: Directly heated quartz crystal microbalance with an integrated dielectric sensor. Sens. Actuators A Phys. 68(1–3), 399–403 (1998)
78. 78.
Heitmann, V., Reiss, B., Wegener, J.; The quartz crystal microbalance in cell biology: basics and applications. In: Steinem, C., Janshoff, A. (eds.) Piezoelectric Sensors. Springer, Berlin (2007)Google Scholar