Skip to main content

Other Surface-Acoustic-Wave Based Instruments

  • Chapter
  • First Online:
The Quartz Crystal Microbalance in Soft Matter Research

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 2248 Accesses

Abstract

There is a variety of sensing instruments making use of acoustic waves (often shear waves) near interfaces. Among the concepts shared between the QCM and these instruments are the mass sensitivity and the acoustic reflectivity as a central intermediate parameter. The kHz resonators measure viscoelastic parameters at frequencies more relevant to most applications than MHz frequencies. On the other hand, they are less sensitive. Smaller resonators operating at higher frequencies tend to have better mass-sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason, W.P., Baker, W.O., McSkimin, H.J., Heiss, J.H.: Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys. Rev. 75(6), 936–946 (1949)

    Article  ADS  Google Scholar 

  2. Alig, I., Lellinger, D., Sulimma, J., Tadjbakhsch, S.: Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films. Rev. Sci. Instrum. 68(3), 1536–1542 (1997)

    Article  ADS  Google Scholar 

  3. Wang, X.J., Subramaniam, K.V., Lin, F.B.: Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste. Ultrasonics 50(7), 726–738 (2010)

    Article  Google Scholar 

  4. Alig, I., Steeman, P.A.M., Lellinger, D., Dias, A.A., Wienke, D.: Polymerization and network formation of UV curable materials monitored by hyphenated real-time ultrasound reflectometry and near-infrared spectroscopy (RT US/NIRS). Prog. Org. Coat. 55(2), 88–96 (2006)

    Article  Google Scholar 

  5. Wegener, M., Oehler, H., Lellinger, D., Alig, I.: Note: piezoelectric polymers as transducers for the ultrasonic-reflection method and the application in mechanical property-screening of coatings. Rev. Sci. Instrum. 83(1), 3 (2012)

    Google Scholar 

  6. Alig, I., Oehler, H., Lellinger, D., Tadjbach, S.: Monitoring of film formation, curing and ageing of coatings by an ultrasonic reflection method. Prog. Org. Coat. 58(2–3), 200–208 (2007)

    Article  Google Scholar 

  7. Lellinger, D., Tadjbach, S., Alig, I.: Determination of the elastic moduli of polymer films by a new ultrasonic reflection method. Macromol. Symp. 184, 203–213 (2002)

    Article  Google Scholar 

  8. Kiry, F., Martinoty, P.: Ultrasonic investigation of anisotropic viscosities in a nematic liquid-crystal. J. De Phys. 38(2), 153–157 (1977)

    Article  Google Scholar 

  9. Martinoty, P., Candau, S.: Determination of viscosity coefficients of a nematic liquid crystal using a shear waves reflectance technique. Mol. Cryst. Liq. Cryst. 14(3–4), 243 (1971)

    Article  Google Scholar 

  10. Alig, I., Tadjbakhsch, S., Floudas, G., Tsitsilianis, C.: Viscoelastic contrast and kinetic frustration during poly(ethylene oxide) crystallization in a homopolymer and a triblock copolymer. Comparison of ultrasonic and low-frequency rheology. Macromolecules 31(20), 6917–6925 (1998)

    Article  ADS  Google Scholar 

  11. Alig, I., Tadjbakhsch, S., Hadjichristidis, N., Floudas, G.: Order-to-disorder transition in a diblock copolymer studied at ultrasonic frequencies with a shear wave reflection technique. Europhys. Lett. 52(3), 291–296 (2000)

    Article  ADS  Google Scholar 

  12. Baron, T., Lebrasseur, E., Bassignot, F., Martin, G., Pétrini, V., Ballandras, S.: High-overtone bulk acoustic resonator. In: Beghi, M.G. (ed.) Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices. Intech, Rijeka (2013). www.intechopen.com/books/modeling-and-measurement-methods-for-acoustic-waves-and-for-acoustic-microdevices/high-overtone-bulk-acoustic-resonator

  13. Huang, H.C., Knox, J.D., Turski, Z., Wargo, R., Hanak, J.J.: Fabrication of submicron LiNbO3 transducers for microwave acoustic (bulk) delay-lines. Appl. Phys. Lett. 24(3), 109–111 (1974)

    Article  ADS  Google Scholar 

  14. Gachon, D., Courjon, E., Martin, G., Gauthier-Manuel, L., Jeannot, J.-C., Daniau, W., Ballandras, S.: Fabrication of high frequency bulk acoustic wave resonator using thinned single-crystal lithium niobate. Ferroelectrics 362(1), 30–40 (2010) www.tandfonline.com/doi/abs/10.1080/00150190801997872

  15. Rabus, D., Martin, G., Carry, E., Ballandras, S.: Eight channel embedded electronic open loop interrogation for multi sensor measurements. Proc. Eur. Freq. Time Forum (EFTF) 436–442 (2012)

    Google Scholar 

  16. Pijolat, M., Reinhardt, A., Defay, E., Deguet, C., Mercier, D., Aid, M., Moulet, J., Ghyselen, B., Gachon, D., Ballandras, S.: Large Qf product for HBAR using smart cut transfer of LiNbO3 thin layers onto LiNbO3 substrate. Proc. IEEE Ultrason. Symp. 201–204 (2008)

    Google Scholar 

  17. Mansfeld, G.D.: Theory of high overtone bulk acoustic wave resonator as a gas sensor. In: Proceedings of 13th International Conference on Microwaves, Radar and Wireless Communications (MIKON) (2000)

    Google Scholar 

  18. Valtorta, D., Mazza, E.: Measurement of rheological properties of soft biological tissue with a novel torsional resonator device. Rheol. Acta 45(5), 677–692 (2006)

    Article  Google Scholar 

  19. Stroop, R., Uribe, D.O., Martinez, M.O., Brokelmann, M., Hemsel, T., Wallaschek, J.: Tactile tissue characterisation by piezoelectric systems. J. Electroceram. 20(3–4), 237–241 (2008)

    Article  Google Scholar 

  20. Stokich, T.M., Radtke, D.R., White, C.C., Schrag, J.L.: An instrument for precise measurement of viscoelastic properties of low-viscosity dilute macromolecular solutions at Frequencies from 20 to 500 khz. J. Rheol. 38(4), 1195–1210 (1994)

    Article  ADS  Google Scholar 

  21. http://www.flucon.de/. Accessed 28 Feb 2013

  22. Kirschenmann, L., Pechhold, W.: Piezoelectric rotary vibrator (PRV)—a new oscillating rheometer for linear viscoelasticity. Rheol. Acta 41(4), 362–368 (2002)

    Article  Google Scholar 

  23. Pechhold, W., Mayer, U., Raju, G.B., Guillon, O.: Piezo rotary and axial vibrator (PRAV) characterization of a fresh coating during its drying. Rheol. Acta 50(3), 221–229 (2011)

    Article  Google Scholar 

  24. Crassous, J.J., Regisser, R., Ballauff, M., Willenbacher, N.: Characterization of the viscoelastic behavior of complex fluids using the piezoelastic axial vibrator. J. Rheol. 49(4), 851–863 (2005)

    Article  ADS  Google Scholar 

  25. Vadillo, D.C., Tuladhar, T.R., Mulji, A.C., Mackley, M.R.: The rheological characterization of linear viscoelasticity for ink jet fluids using piezo axial vibrator and torsion resonator rheometers. J. Rheol. 54(4), 781–795 (2010)

    Article  ADS  Google Scholar 

  26. Grate, J.W., Martin, S.J., White, R.M.: Acoustic-wave microsensors. 1. Anal. Chem. 65(21), A940–A948 (1993)

    Article  Google Scholar 

  27. Martin, S.J., Frye, G.C., Senturia, S.D.: Dynamics and response of polymer-coated surface-acoustic-wave devices—effect of viscoelastic properties and film resonance. Anal. Chem. 66(14), 2201–2219 (1994)

    Article  Google Scholar 

  28. Reindl, L., Scholl, G., Ostertag, T., Scherr, H., Wolff, U., Schmidt, F.: Theory and application of passive SAW radio transponders as sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1281–1292 (1998)

    Article  Google Scholar 

  29. Rock, F., Barsan, N., Weimar, U.: Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008)

    Article  Google Scholar 

  30. http://us.msasafety.com/CBRNE-Detectors/CBRNE-Detectors/HAZMATCAD%26reg%3B-and-HAZMATCAD%26reg%3B-Plus/p/000400000200001000. Accessed 11 May 2013

  31. Yeo, L.Y., Friend, J.R.: Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3(1), 012002 (2009)

    Google Scholar 

  32. Friend, J., Yeo, L.Y.: Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rep. Prog. Phys. 83(2), 647–704 (2011)

    Google Scholar 

  33. Josse, F., Bender, F., Cernosek, R.W.: Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Anal. Chem. 73(24), 5937–5944 (2001)

    Article  Google Scholar 

  34. Saha, K., Bender, F., Gizeli, E.: Comparative study of IgG binding to proteins G and A: nonequilibrium kinetic and binding constant determination with the acoustic waveguide device. Anal. Chem. 75(4), 835–842 (2003)

    Article  Google Scholar 

  35. Fu, Y.Q., Luo, J.K., Du, X.Y., Flewitt, A.J., Li, Y., Markx, G.H., Walton, A.J., Milne, W.I.: Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens. Actuators B Chem. 143(2), 606–619 (2010)

    Article  Google Scholar 

  36. Martin, F., Newton, M.I., McHale, G., Melzak, K.A., Gizeli, E.: Pulse mode shear horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing applications. Biosens. Bioelectron. 19(6), 627–632 (2004)

    Article  Google Scholar 

  37. Lange, K., Rapp, B.E., Rapp, M.: Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391(5), 1509–1519 (2008)

    Article  Google Scholar 

  38. http://saw-instruments.com/index.php. Accessed 20 Sept 2013

  39. Pohl, A.: A review of wireless SAW sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(2), 317–332 (2000)

    Article  MathSciNet  Google Scholar 

  40. Zhou, X.F., Zhang, J., Jiang, T., Wang, X.H., Zhu, Z.Q.: Humidity detection by nanostructured ZnO: a wireless quartz crystal microbalance investigation. Sens. Actuators A Phys. 135(1), 209–214 (2007)

    Article  Google Scholar 

  41. Ricco, A.J., Martin, S.J., Zipperian, T.E.: Surface acoustic-wave gas sensor based on film conductivity changes. Sens. Actuators 8(4), 319–333 (1985)

    Article  ADS  Google Scholar 

  42. Jungwirth, M., Scherr, H., Weigel, R.: Micromechanical precision pressure sensor incorporating SAW delay lines. Acta Mech. 158(3–4), 227–252 (2002)

    Article  MATH  Google Scholar 

  43. Berger, R., Gerber, C., Lang, H.P., Gimzewski, J.K.: Micromechanics: a toolbox for femtoscale science: “towards a laboratory on a tip”‘. Microelectron. Eng. 35(1–4), 373–379 (1997)

    Article  Google Scholar 

  44. Varshney, M., Waggoner, P.S., Tan, C.P., Aubin, K., Montagna, R.A., Craighead, H.G.: Prion protein detection using nanomechanical resonator arrays and secondary mass labeling. Anal. Chem. 80(6), 2141–2148 (2008)

    Article  Google Scholar 

  45. Waggoner, P.S., Varshney, M., Craighead, H.G.: Detection of prostate specific antigen with nanomechanical resonators. Lab Chip 9(21), 3095–3099 (2009)

    Article  Google Scholar 

  46. Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6(4), 583–586 (2006)

    Article  ADS  Google Scholar 

  47. Wingqvist, G.: AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—a review. Surf. Coat. Technol. 205(5), 1279–1286 (2010)

    Article  Google Scholar 

  48. Wingqvist, G., Bjurstrom, J., Liljeholm, L., Yantchev, V., Katardjiev, I.: Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sens. Actuators B Chem. 123(1), 466–473 (2007)

    Article  Google Scholar 

  49. Zuniga, C., Rinaldi, M., Khamis, S.M., Johnson, A.T., Piazza, G.: Nanoenabled microelectromechanical sensor for volatile organic chemical detection. Appl. Phys. Lett. 94(22), 223122 (2009)

    Google Scholar 

  50. Tang, P.K., Wang, P.H., Li, M.L., Lu, M.S.C.: Design and characterization of the immersion-type capacitive ultrasonic sensors fabricated in a CMOS process. J. Micromech. Microeng. 21(2), 129901 (2011)

    Google Scholar 

  51. Arlett, J.L., Roukes, M.L.: Ultimate and practical limits of fluid-based mass detection with suspended microchannel resonators. J. Appl. Phys. 108(8) , 084701 (2010)

    Google Scholar 

  52. Fanget, S., Hentz, S., Puget, P., Arcamone, J., Matheron, M., Colinet, E., Andreucci, P., Duraffourg, L., Myers, E., Roukes, M.L.: Gas sensors based on gravimetric detection—a review. Sens. Actuators B Chem. 160(1), 804–821 (2011)

    Article  Google Scholar 

  53. Lange, D., Brand, O., Baltes, H.: CMOS Cantilever Sensor Systems: Atomic Force Microscopy and Gas Sensing Applications. Springer (2002)

    Google Scholar 

  54. Hölscher, H., Schwarz, U.D., Wiesendanger, R.: Calculation of the frequency shift in dynamic force microscopy. Appl. Surf. Sci. 140(3–4), 344–351 (1999)

    Article  ADS  Google Scholar 

  55. Sader, J.E., Jarvis, S.P.: Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84(10), 1801–1803 (2004)

    Article  ADS  Google Scholar 

  56. Giessibl, F.J.: A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl. Phys. Lett. 78(1), 123–125 (2001)

    Article  ADS  Google Scholar 

  57. Dufour, I., Josse, F., Heinrich, S.M., Lucat, C., Ayela, C., Menil, F., Brand, O.: Unconventional uses of microcantilevers as chemical sensors in gas and liquid media. Sens. Actuators B Chem. 170, 115–121 (2012)

    Article  Google Scholar 

  58. Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 300–303 (2012)

    Article  ADS  Google Scholar 

  59. http://www.ifcs-eftf2011.org/sites/ifcs-eftf2011.org/files/editor-files/Slides_Piazza.pdf. Accessed 18 June 2014

  60. Rubiola, E.: Phase Noise and Frequency Stability in Oscillators. Cambridge University Press, New York (2010)

    Google Scholar 

  61. Lakin, K., Wang, J., Kline, G., Landin, A., Chen, Y., Hunt, J. Thin film resonators and filters. In: Ultrasonics Symposium Proceedings, pp. 466–475 (1982)

    Google Scholar 

  62. Wingqvist, G.: Thin-film electro-acoustic sensors based on AlN and its alloys: possibilities and limitations. Microsyst. Technol. Micro Nanosyst. Inf. Storage Process. Syst. 18(7–8), 1213–1223 (2012)

    Google Scholar 

  63. Ruby, R.: Review and comparison of bulk acoustic wave FBAR, SMR technology. In: 2007 IEEE Ultrasonics Symposium Proceedings, vols. 1–6, pp. 1029–1040, New York (2007)

    Google Scholar 

  64. Haines, J., Cambon, O., Keen, D.A., Tucker, M.G., Dove, M.T.: Structural disorder and loss of piezoelectric properties in alpha-quartz at high temperature. Appl. Phys. Lett. 81(16), 2968–2970 (2002)

    Article  ADS  Google Scholar 

  65. Krempl, P., Schleinzer, G., Wallnofer, W.: Gallium phosphate, GaPO4: a new piezoelectric crystal material for high-temperature sensorics. Sens. Actuators A Phys. 61(1–3), 361–363 (1997)

    Article  Google Scholar 

  66. Fritze, H., Tuller, H.L.: Langasite for high-temperature bulk acoustic wave applications. Appl. Phys. Lett. 78(7), 976–977 (2001)

    Article  ADS  Google Scholar 

  67. http://newpiezo.com/langasite.html. Accessed 28 Mar 2013

  68. Yu, F.P., Zhang, S.J., Zhao, X.A., Yuan, D.R., Wang, Q.M., Shrout, T.R.: High temperature piezoelectric properties of yttrium calcium oxyborate single crystals. Phys. Status Solidi Rapid Res. Lett. 4(5–6), 103–105 (2010)

    Article  ADS  Google Scholar 

  69. https://www.avl.com/pressure-sensors-for-combustion-analysis. Accessed 28 Mar 2013

  70. Fritze, H.: High-temperature piezoelectric crystals and devices. J. Electroceram. 26(1–4), 122–161 (2011)

    Article  Google Scholar 

  71. Jin, X.X., Huang, Y., Mason, A., Zeng, X.Q.: Multichannel monolithic quartz crystal microbalance gas sensor array. Anal. Chem. 81(2), 595–603 (2009)

    Article  Google Scholar 

  72. Hung, V.N., Abe, T., Minh, P.N., Esashi, M.: Miniaturized, highly sensitive single-chip multichannel quartz-crystal microbalance. Appl. Phys. Lett. 81(26), 5069–5071 (2002)

    Article  ADS  Google Scholar 

  73. Berg, S., Johannsmann, D.: High speed microtribology with quartz crystal resonators. Phys. Rev. Lett. 91(14), 145505 (2003)

    Article  ADS  Google Scholar 

  74. Arlett, J.L., Myers, E.B., Roukes, M.L.: Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6(4), 203–215 (2011)

    Article  ADS  Google Scholar 

  75. Squires, T.M., Messinger, R.J., Manalis, S.R.: Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat. Biotechnol. 26(4), 417–426 (2008)

    Article  Google Scholar 

  76. Rabe, J., Seidemann, V., Buettgenbach, S.: Monolithic fabrication of wireless miniaturized quartz crystal microbalance (QCM-R) arrays and their application for biochemical sensors. Sens. Mater. 15(7), 381–391 (2003)

    Google Scholar 

  77. O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M., Cleland, A.N.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464(7289), 697–703 (2010)

    Article  ADS  Google Scholar 

  78. Teufel, J.D., Donner, T., Li, D.L., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475(7356), 359–363 (2011)

    Article  ADS  Google Scholar 

  79. Meystre, P.: Cool vibrations. Science 333(6044), 832–833 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

A

Effective area of the resonator plate

c

Speed of propagation

E

Energy

f

As an index: film

f r

Resonance frequency

f 0

Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

GL

As an index: Guiding Layer

h

Planck constant

M R

Mass of a resonator

\( \tilde{r}_{q,S} \)

Reflectivity evaluated at the resonator surface

Z q

Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)

λ

Wavelength of sound

Γ

Imaginary part of a resonance frequency

κ R

Spring constant of a resonator

ξ R

Drag coefficient of a resonator

ω

Angular frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Other Surface-Acoustic-Wave Based Instruments. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_15

Download citation

Publish with us

Policies and ethics