Other Surface-Acoustic-Wave Based Instruments

Chapter
Part of the Soft and Biological Matter book series (SOBIMA)

Abstract

There is a variety of sensing instruments making use of acoustic waves (often shear waves) near interfaces. Among the concepts shared between the QCM and these instruments are the mass sensitivity and the acoustic reflectivity as a central intermediate parameter. The kHz resonators measure viscoelastic parameters at frequencies more relevant to most applications than MHz frequencies. On the other hand, they are less sensitive. Smaller resonators operating at higher frequencies tend to have better mass-sensitivity.

Notes

Glossary

Variable

Definition (Comments)

A

Effective area of the resonator plate

c

Speed of propagation

E

Energy

f

As an index: film

fr

Resonance frequency

f0

Resonance frequency at the fundamental (f0 = Zq/(2mq) = Zq/(2ρqdq))

GL

As an index: Guiding Layer

h

Planck constant

MR

Mass of a resonator

\( \tilde{r}_{q,S} \)

Reflectivity evaluated at the resonator surface

Zq

Acoustic wave impedance of AT-cut quartz (Zq = 8.8 × 106 kg m−2 s−1)

λ

Wavelength of sound

Γ

Imaginary part of a resonance frequency

κR

Spring constant of a resonator

ξR

Drag coefficient of a resonator

ω

Angular frequency

References

  1. 1.
    Mason, W.P., Baker, W.O., McSkimin, H.J., Heiss, J.H.: Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys. Rev. 75(6), 936–946 (1949)ADSCrossRefGoogle Scholar
  2. 2.
    Alig, I., Lellinger, D., Sulimma, J., Tadjbakhsch, S.: Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films. Rev. Sci. Instrum. 68(3), 1536–1542 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, X.J., Subramaniam, K.V., Lin, F.B.: Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste. Ultrasonics 50(7), 726–738 (2010)CrossRefGoogle Scholar
  4. 4.
    Alig, I., Steeman, P.A.M., Lellinger, D., Dias, A.A., Wienke, D.: Polymerization and network formation of UV curable materials monitored by hyphenated real-time ultrasound reflectometry and near-infrared spectroscopy (RT US/NIRS). Prog. Org. Coat. 55(2), 88–96 (2006)CrossRefGoogle Scholar
  5. 5.
    Wegener, M., Oehler, H., Lellinger, D., Alig, I.: Note: piezoelectric polymers as transducers for the ultrasonic-reflection method and the application in mechanical property-screening of coatings. Rev. Sci. Instrum. 83(1), 3 (2012)Google Scholar
  6. 6.
    Alig, I., Oehler, H., Lellinger, D., Tadjbach, S.: Monitoring of film formation, curing and ageing of coatings by an ultrasonic reflection method. Prog. Org. Coat. 58(2–3), 200–208 (2007)CrossRefGoogle Scholar
  7. 7.
    Lellinger, D., Tadjbach, S., Alig, I.: Determination of the elastic moduli of polymer films by a new ultrasonic reflection method. Macromol. Symp. 184, 203–213 (2002)CrossRefGoogle Scholar
  8. 8.
    Kiry, F., Martinoty, P.: Ultrasonic investigation of anisotropic viscosities in a nematic liquid-crystal. J. De Phys. 38(2), 153–157 (1977)CrossRefGoogle Scholar
  9. 9.
    Martinoty, P., Candau, S.: Determination of viscosity coefficients of a nematic liquid crystal using a shear waves reflectance technique. Mol. Cryst. Liq. Cryst. 14(3–4), 243 (1971)CrossRefGoogle Scholar
  10. 10.
    Alig, I., Tadjbakhsch, S., Floudas, G., Tsitsilianis, C.: Viscoelastic contrast and kinetic frustration during poly(ethylene oxide) crystallization in a homopolymer and a triblock copolymer. Comparison of ultrasonic and low-frequency rheology. Macromolecules 31(20), 6917–6925 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Alig, I., Tadjbakhsch, S., Hadjichristidis, N., Floudas, G.: Order-to-disorder transition in a diblock copolymer studied at ultrasonic frequencies with a shear wave reflection technique. Europhys. Lett. 52(3), 291–296 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Baron, T., Lebrasseur, E., Bassignot, F., Martin, G., Pétrini, V., Ballandras, S.: High-overtone bulk acoustic resonator. In: Beghi, M.G. (ed.) Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices. Intech, Rijeka (2013). www.intechopen.com/books/modeling-and-measurement-methods-for-acoustic-waves-and-for-acoustic-microdevices/high-overtone-bulk-acoustic-resonator
  13. 13.
    Huang, H.C., Knox, J.D., Turski, Z., Wargo, R., Hanak, J.J.: Fabrication of submicron LiNbO3 transducers for microwave acoustic (bulk) delay-lines. Appl. Phys. Lett. 24(3), 109–111 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    Gachon, D., Courjon, E., Martin, G., Gauthier-Manuel, L., Jeannot, J.-C., Daniau, W., Ballandras, S.: Fabrication of high frequency bulk acoustic wave resonator using thinned single-crystal lithium niobate. Ferroelectrics 362(1), 30–40 (2010) www.tandfonline.com/doi/abs/10.1080/00150190801997872
  15. 15.
    Rabus, D., Martin, G., Carry, E., Ballandras, S.: Eight channel embedded electronic open loop interrogation for multi sensor measurements. Proc. Eur. Freq. Time Forum (EFTF) 436–442 (2012)Google Scholar
  16. 16.
    Pijolat, M., Reinhardt, A., Defay, E., Deguet, C., Mercier, D., Aid, M., Moulet, J., Ghyselen, B., Gachon, D., Ballandras, S.: Large Qf product for HBAR using smart cut transfer of LiNbO3 thin layers onto LiNbO3 substrate. Proc. IEEE Ultrason. Symp. 201–204 (2008)Google Scholar
  17. 17.
    Mansfeld, G.D.: Theory of high overtone bulk acoustic wave resonator as a gas sensor. In: Proceedings of 13th International Conference on Microwaves, Radar and Wireless Communications (MIKON) (2000)Google Scholar
  18. 18.
    Valtorta, D., Mazza, E.: Measurement of rheological properties of soft biological tissue with a novel torsional resonator device. Rheol. Acta 45(5), 677–692 (2006)CrossRefGoogle Scholar
  19. 19.
    Stroop, R., Uribe, D.O., Martinez, M.O., Brokelmann, M., Hemsel, T., Wallaschek, J.: Tactile tissue characterisation by piezoelectric systems. J. Electroceram. 20(3–4), 237–241 (2008)CrossRefGoogle Scholar
  20. 20.
    Stokich, T.M., Radtke, D.R., White, C.C., Schrag, J.L.: An instrument for precise measurement of viscoelastic properties of low-viscosity dilute macromolecular solutions at Frequencies from 20 to 500 khz. J. Rheol. 38(4), 1195–1210 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    http://www.flucon.de/. Accessed 28 Feb 2013
  22. 22.
    Kirschenmann, L., Pechhold, W.: Piezoelectric rotary vibrator (PRV)—a new oscillating rheometer for linear viscoelasticity. Rheol. Acta 41(4), 362–368 (2002)CrossRefGoogle Scholar
  23. 23.
    Pechhold, W., Mayer, U., Raju, G.B., Guillon, O.: Piezo rotary and axial vibrator (PRAV) characterization of a fresh coating during its drying. Rheol. Acta 50(3), 221–229 (2011)CrossRefGoogle Scholar
  24. 24.
    Crassous, J.J., Regisser, R., Ballauff, M., Willenbacher, N.: Characterization of the viscoelastic behavior of complex fluids using the piezoelastic axial vibrator. J. Rheol. 49(4), 851–863 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Vadillo, D.C., Tuladhar, T.R., Mulji, A.C., Mackley, M.R.: The rheological characterization of linear viscoelasticity for ink jet fluids using piezo axial vibrator and torsion resonator rheometers. J. Rheol. 54(4), 781–795 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Grate, J.W., Martin, S.J., White, R.M.: Acoustic-wave microsensors. 1. Anal. Chem. 65(21), A940–A948 (1993)CrossRefGoogle Scholar
  27. 27.
    Martin, S.J., Frye, G.C., Senturia, S.D.: Dynamics and response of polymer-coated surface-acoustic-wave devices—effect of viscoelastic properties and film resonance. Anal. Chem. 66(14), 2201–2219 (1994)CrossRefGoogle Scholar
  28. 28.
    Reindl, L., Scholl, G., Ostertag, T., Scherr, H., Wolff, U., Schmidt, F.: Theory and application of passive SAW radio transponders as sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1281–1292 (1998)CrossRefGoogle Scholar
  29. 29.
    Rock, F., Barsan, N., Weimar, U.: Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008)CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Yeo, L.Y., Friend, J.R.: Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3(1), 012002 (2009)Google Scholar
  32. 32.
    Friend, J., Yeo, L.Y.: Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rep. Prog. Phys. 83(2), 647–704 (2011)Google Scholar
  33. 33.
    Josse, F., Bender, F., Cernosek, R.W.: Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Anal. Chem. 73(24), 5937–5944 (2001)CrossRefGoogle Scholar
  34. 34.
    Saha, K., Bender, F., Gizeli, E.: Comparative study of IgG binding to proteins G and A: nonequilibrium kinetic and binding constant determination with the acoustic waveguide device. Anal. Chem. 75(4), 835–842 (2003)CrossRefGoogle Scholar
  35. 35.
    Fu, Y.Q., Luo, J.K., Du, X.Y., Flewitt, A.J., Li, Y., Markx, G.H., Walton, A.J., Milne, W.I.: Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens. Actuators B Chem. 143(2), 606–619 (2010)CrossRefGoogle Scholar
  36. 36.
    Martin, F., Newton, M.I., McHale, G., Melzak, K.A., Gizeli, E.: Pulse mode shear horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing applications. Biosens. Bioelectron. 19(6), 627–632 (2004)CrossRefGoogle Scholar
  37. 37.
    Lange, K., Rapp, B.E., Rapp, M.: Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391(5), 1509–1519 (2008)CrossRefGoogle Scholar
  38. 38.
    http://saw-instruments.com/index.php. Accessed 20 Sept 2013
  39. 39.
    Pohl, A.: A review of wireless SAW sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(2), 317–332 (2000)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Zhou, X.F., Zhang, J., Jiang, T., Wang, X.H., Zhu, Z.Q.: Humidity detection by nanostructured ZnO: a wireless quartz crystal microbalance investigation. Sens. Actuators A Phys. 135(1), 209–214 (2007)CrossRefGoogle Scholar
  41. 41.
    Ricco, A.J., Martin, S.J., Zipperian, T.E.: Surface acoustic-wave gas sensor based on film conductivity changes. Sens. Actuators 8(4), 319–333 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    Jungwirth, M., Scherr, H., Weigel, R.: Micromechanical precision pressure sensor incorporating SAW delay lines. Acta Mech. 158(3–4), 227–252 (2002)CrossRefMATHGoogle Scholar
  43. 43.
    Berger, R., Gerber, C., Lang, H.P., Gimzewski, J.K.: Micromechanics: a toolbox for femtoscale science: “towards a laboratory on a tip”‘. Microelectron. Eng. 35(1–4), 373–379 (1997)CrossRefGoogle Scholar
  44. 44.
    Varshney, M., Waggoner, P.S., Tan, C.P., Aubin, K., Montagna, R.A., Craighead, H.G.: Prion protein detection using nanomechanical resonator arrays and secondary mass labeling. Anal. Chem. 80(6), 2141–2148 (2008)CrossRefGoogle Scholar
  45. 45.
    Waggoner, P.S., Varshney, M., Craighead, H.G.: Detection of prostate specific antigen with nanomechanical resonators. Lab Chip 9(21), 3095–3099 (2009)CrossRefGoogle Scholar
  46. 46.
    Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6(4), 583–586 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Wingqvist, G.: AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—a review. Surf. Coat. Technol. 205(5), 1279–1286 (2010)CrossRefGoogle Scholar
  48. 48.
    Wingqvist, G., Bjurstrom, J., Liljeholm, L., Yantchev, V., Katardjiev, I.: Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sens. Actuators B Chem. 123(1), 466–473 (2007)CrossRefGoogle Scholar
  49. 49.
    Zuniga, C., Rinaldi, M., Khamis, S.M., Johnson, A.T., Piazza, G.: Nanoenabled microelectromechanical sensor for volatile organic chemical detection. Appl. Phys. Lett. 94(22), 223122 (2009)Google Scholar
  50. 50.
    Tang, P.K., Wang, P.H., Li, M.L., Lu, M.S.C.: Design and characterization of the immersion-type capacitive ultrasonic sensors fabricated in a CMOS process. J. Micromech. Microeng. 21(2), 129901 (2011)Google Scholar
  51. 51.
    Arlett, J.L., Roukes, M.L.: Ultimate and practical limits of fluid-based mass detection with suspended microchannel resonators. J. Appl. Phys. 108(8) , 084701 (2010)Google Scholar
  52. 52.
    Fanget, S., Hentz, S., Puget, P., Arcamone, J., Matheron, M., Colinet, E., Andreucci, P., Duraffourg, L., Myers, E., Roukes, M.L.: Gas sensors based on gravimetric detection—a review. Sens. Actuators B Chem. 160(1), 804–821 (2011)CrossRefGoogle Scholar
  53. 53.
    Lange, D., Brand, O., Baltes, H.: CMOS Cantilever Sensor Systems: Atomic Force Microscopy and Gas Sensing Applications. Springer (2002)Google Scholar
  54. 54.
    Hölscher, H., Schwarz, U.D., Wiesendanger, R.: Calculation of the frequency shift in dynamic force microscopy. Appl. Surf. Sci. 140(3–4), 344–351 (1999)ADSCrossRefGoogle Scholar
  55. 55.
    Sader, J.E., Jarvis, S.P.: Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84(10), 1801–1803 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    Giessibl, F.J.: A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl. Phys. Lett. 78(1), 123–125 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Dufour, I., Josse, F., Heinrich, S.M., Lucat, C., Ayela, C., Menil, F., Brand, O.: Unconventional uses of microcantilevers as chemical sensors in gas and liquid media. Sens. Actuators B Chem. 170, 115–121 (2012)CrossRefGoogle Scholar
  58. 58.
    Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 300–303 (2012)ADSCrossRefGoogle Scholar
  59. 59.
  60. 60.
    Rubiola, E.: Phase Noise and Frequency Stability in Oscillators. Cambridge University Press, New York (2010)Google Scholar
  61. 61.
    Lakin, K., Wang, J., Kline, G., Landin, A., Chen, Y., Hunt, J. Thin film resonators and filters. In: Ultrasonics Symposium Proceedings, pp. 466–475 (1982)Google Scholar
  62. 62.
    Wingqvist, G.: Thin-film electro-acoustic sensors based on AlN and its alloys: possibilities and limitations. Microsyst. Technol. Micro Nanosyst. Inf. Storage Process. Syst. 18(7–8), 1213–1223 (2012)Google Scholar
  63. 63.
    Ruby, R.: Review and comparison of bulk acoustic wave FBAR, SMR technology. In: 2007 IEEE Ultrasonics Symposium Proceedings, vols. 1–6, pp. 1029–1040, New York (2007)Google Scholar
  64. 64.
    Haines, J., Cambon, O., Keen, D.A., Tucker, M.G., Dove, M.T.: Structural disorder and loss of piezoelectric properties in alpha-quartz at high temperature. Appl. Phys. Lett. 81(16), 2968–2970 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    Krempl, P., Schleinzer, G., Wallnofer, W.: Gallium phosphate, GaPO4: a new piezoelectric crystal material for high-temperature sensorics. Sens. Actuators A Phys. 61(1–3), 361–363 (1997)CrossRefGoogle Scholar
  66. 66.
    Fritze, H., Tuller, H.L.: Langasite for high-temperature bulk acoustic wave applications. Appl. Phys. Lett. 78(7), 976–977 (2001)ADSCrossRefGoogle Scholar
  67. 67.
    http://newpiezo.com/langasite.html. Accessed 28 Mar 2013
  68. 68.
    Yu, F.P., Zhang, S.J., Zhao, X.A., Yuan, D.R., Wang, Q.M., Shrout, T.R.: High temperature piezoelectric properties of yttrium calcium oxyborate single crystals. Phys. Status Solidi Rapid Res. Lett. 4(5–6), 103–105 (2010)ADSCrossRefGoogle Scholar
  69. 69.
  70. 70.
    Fritze, H.: High-temperature piezoelectric crystals and devices. J. Electroceram. 26(1–4), 122–161 (2011)CrossRefGoogle Scholar
  71. 71.
    Jin, X.X., Huang, Y., Mason, A., Zeng, X.Q.: Multichannel monolithic quartz crystal microbalance gas sensor array. Anal. Chem. 81(2), 595–603 (2009)CrossRefGoogle Scholar
  72. 72.
    Hung, V.N., Abe, T., Minh, P.N., Esashi, M.: Miniaturized, highly sensitive single-chip multichannel quartz-crystal microbalance. Appl. Phys. Lett. 81(26), 5069–5071 (2002)ADSCrossRefGoogle Scholar
  73. 73.
    Berg, S., Johannsmann, D.: High speed microtribology with quartz crystal resonators. Phys. Rev. Lett. 91(14), 145505 (2003)ADSCrossRefGoogle Scholar
  74. 74.
    Arlett, J.L., Myers, E.B., Roukes, M.L.: Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6(4), 203–215 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    Squires, T.M., Messinger, R.J., Manalis, S.R.: Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat. Biotechnol. 26(4), 417–426 (2008)CrossRefGoogle Scholar
  76. 76.
    Rabe, J., Seidemann, V., Buettgenbach, S.: Monolithic fabrication of wireless miniaturized quartz crystal microbalance (QCM-R) arrays and their application for biochemical sensors. Sens. Mater. 15(7), 381–391 (2003)Google Scholar
  77. 77.
    O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M., Cleland, A.N.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464(7289), 697–703 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    Teufel, J.D., Donner, T., Li, D.L., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475(7356), 359–363 (2011)ADSCrossRefGoogle Scholar
  79. 79.
    Meystre, P.: Cool vibrations. Science 333(6044), 832–833 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Physical ChemistryClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations