Skip to main content

Nonlinear Interactions

  • Chapter
  • First Online:
  • 2240 Accesses

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

If the stress at the resonator surface is not proportional to the displacement (if there is nonlinear response), the frequency shift depends on the amplitude of oscillation. Nonlinearities can also be detected in the form of steady forces, steady flows, second-harmonic signals, and third-harmonic signals. The chapter gives particular emphasis to the amplitude dependence of the frequency shift. It is analyzed in the frame of a time-averaged periodic stress inserted into the SLA. An application example is the study of partial slip.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  2. Popov, V.L.: Contact Mechanics and Friction: Physical Principles and Applications. Springer, Heidelberg (2010)

    Google Scholar 

  3. Patel, M.S., Yong, Y.K., Tanaka, M.: Drive level dependency in quartz resonators. Int. J. Solids Struct. 46(9), 1856–1871 (2009)

    Article  MATH  Google Scholar 

  4. Leopoldes, J., Jia, X.: Transverse shear oscillator investigation of boundary lubrication in weakly adhered films. Phys. Rev. Lett. 105(26), 266101 (2010)

    Google Scholar 

  5. Wondraczek, K., Bund, A., Johannsmann, D.: Acoustic second harmonic generation from rough surfaces under shear excitation in liquids. Langmuir 20(23), 10346–10350 (2004)

    Article  Google Scholar 

  6. Heim, L.O., Johannsmann, D.: Oscillation-induced static deflection in scanning force microscopy. Rev. Sci. Instrum. 78(1), 013902 (2007)

    Google Scholar 

  7. Krotil, H.U., Stifter, T., Marti, O.: Lock-in technique for concurrent measurement of adhesion and friction with the scanning force microscope. Rev. Sci. Instrum. 72(1), 150–156 (2001)

    Article  ADS  Google Scholar 

  8. Rabe, U., Amelio, S., Kopycinska, M., Hirsekorn, S., Kempf, M., Goken, M., Arnold, W.: Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf. Interface Anal. 33(2), 65–70 (2002)

    Article  Google Scholar 

  9. Rabe, U., Janser, K., Arnold, W.: Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67(9), 3281–3293 (1996)

    Article  ADS  Google Scholar 

  10. Larson, R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, New York (1998)

    Google Scholar 

  11. Bruus, H., Dual, J., Hawkes, J., Hill, M., Laurell, T., Nilsson, J., Radel, S., Sadhal, S., Wiklund, M.: Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11(21), 3579–3580 (2012)

    Article  Google Scholar 

  12. Riley, N.: Steady streaming. Annu. Rev. Fluid Mech. 33, 43–65 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Langhoff, A., Johannsmann, D.: Attractive forces on hard and soft colloidal objects located close to the surface of an acoustic-thickness shear resonator. Phys. Rev. E 88(1), 013001 (2013)

    Google Scholar 

  14. König, R., Langhoff, A., Johannsmann, D.: Steady flows above a quartz crystal resonator driven at elevated amplitude. Phys.Rev. E 89, 043016 (2014)

    Google Scholar 

  15. Wang, C.Y., Drachman, B.: The steady streaming generated by a vibrating plate parallel to a fixed plate. Appl. Sci. Res. 39(1), 55–68 (1982)

    Article  MATH  Google Scholar 

  16. Sadhal, S.S.: Acoustofluidics 13: analysis of acoustic streaming by perturbation methods Foreword. Lab Chip 12(13), 2292–2300 (2012)

    Article  Google Scholar 

  17. Cooper, M.A., Dultsev, F.N., Minson, T., Ostanin, V.P., Abell, C., Klenerman, D.: Direct and sensitive detection of a human virus by rupture event scanning. Nat. Biotechnol. 19(9), 833–837 (2001)

    Article  Google Scholar 

  18. Dultsev, F.N., Speight, R.E., Florini, M.T., Blackburn, J.M., Abell, C., Ostanin, V.P., Klenerman, D.: Direct and quantitative detection of bacteriophage by “Hearing” surface detachment using a quartz crystal microbalance. Anal. Chem. 73(16), 3935–3939 (2001)

    Article  Google Scholar 

  19. Edvardsson, M., Rodahl, M., Hook, F.: Investigation of binding event perturbations caused by elevated QCM-D oscillation amplitude. Analyst 131(7), 822–828 (2006)

    Article  ADS  Google Scholar 

  20. Heitmann, V., Wegener, J.: Monitoring cell adhesion by piezoresonators: impact of increasing oscillation amplitudes. Anal. Chem. 79(9), 3392–3400 (2007)

    Article  Google Scholar 

  21. Yeo, L.Y., Friend, J.R.: Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3(1), 012002 (2009)

    Google Scholar 

  22. Strogatz, S.: Nonlinear Dynamics and Chaos, Chapter 7.6. Addison-Wesley, Boston (1996)

    Google Scholar 

  23. Berg, S., Prellberg, T., Johannsmann, D.: Nonlinear contact mechanics based on ring-down experiments with quartz crystal resonators. Rev. Sci. Instrum. 74(1), 118–126 (2003)

    Article  ADS  Google Scholar 

  24. Johannsmann, D.: Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys. Chem. Chem. Phys. 10(31), 4516–4534 (2008)

    Article  Google Scholar 

  25. Giessibl, F.J.: A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl. Phys. Lett. 78(1), 123–125 (2001)

    Article  ADS  Google Scholar 

  26. Hölscher, H., Schwarz, U.D., Wiesendanger, R.: Calculation of the frequency shift in dynamic force microscopy. Appl. Surf. Sci. 140(3–4), 344–351 (1999)

    Article  ADS  Google Scholar 

  27. Sader, J.E., Jarvis, S.P.: Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84(10), 1801–1803 (2004)

    Article  ADS  Google Scholar 

  28. Kunze, A., Zhao, F., Marel, A.K., Svedhem, S., Kasemo, B.: Ion-mediated changes of supported lipid bilayers and their coupling to the substrate. A case of bilayer slip? Soft Matter 7(18), 8582–8591 (2011)

    Article  ADS  Google Scholar 

  29. Hanke, S., Petri, J., Johannsmann, D.: Partial slip in mesoscale contacts: dependence on contact size. Phys. Rev. E 88(3), 032408 (2013)

    Google Scholar 

  30. Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. Trans Asme 20(3), 327–344 (1953)

    MATH  MathSciNet  Google Scholar 

  31. Savkoor, A.R.: Dry Adhesive Contact of Elastomers. University Delft, Tech (1987)

    Google Scholar 

  32. Johnson, K.L.: Adhesion and friction between a smooth elastic spherical asperity and a plane surface. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1997(453), 163–179 (1956)

    Google Scholar 

  33. Leopoldes, J., Jia, X.: Transverse shear oscillator investigation of boundary lubrication in weakly adhered films. Phys. Rev. Lett. 105(26), 266101–266104 (2010)

    Google Scholar 

  34. Rabe, U., Amelio, S., Kester, E., Scherer, V., Hirsekorn, S., Arnold, W.: Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38(1–8), 430–437 (2000)

    Article  Google Scholar 

  35. Eriten, M., Lee, C.H., Polycarpou, A.A.: Measurements of tangential stiffness and damping of mechanical joints: direct versus indirect contact resonance methods. Tribol. Int. 50, 35–44 (2012)

    Article  Google Scholar 

  36. Melan, E.: Zur Plastizität des räumlichen Kontinuums. Ing. Arch. 9, 116 (1938)

    Article  MATH  Google Scholar 

  37. Klarbring, A., Ciavarella, M., Barber, J.R.: Shakedown in elastic contact problems with Coulomb friction. Int. J. Solids Struct. 44(25–26), 8355–8365 (2007)

    Article  MATH  Google Scholar 

  38. Berg, S., Johannsmann, D.: High speed microtribology with quartz crystal resonators. Phys. Rev. Lett. 91(14), 145505 (2003)

    Google Scholar 

  39. http://en.wikipedia.org/wiki/Duffing_equation. Accessed 14 Feb 2014

  40. Ghosh, S.K., Ostanin, V.P., Seshia, A.A.: Anharmonic surface interactions for biomolecular screening and characterization. Anal. Chem. 83(2), 549–554 (2010)

    Article  Google Scholar 

  41. Johannsmann, D., Mathauer, K., Wegner, G., Knoll, W.: Viscoelastic properties of thin-films probed with a quartz-crystal resonator. Phys. Rev. B 46(12), 7808–7815 (1992)

    Article  ADS  Google Scholar 

  42. http://en.wikipedia.org/wiki/Conoscopy. Accessed 4 Feb 2013

  43. Hartshorne, N.H., Stuart, A.: Crystals and the Polarizing Microscope. Hodder & Stoughton Educational, London (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

\( \left\langle \ldots \right\rangle \)

An average

0

As an index: amplitude of a real-valued time-harmonic function

a

Instantaneous amplitude (Eq. 13.3.6)

A

(Effective) area of the resonator plate

f

Frequency

f body

A body force (Eq. 13.2.1)

f d

Damped resonance frequency

f 0

Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

F

Tangential force

F +, F

Force at interface while u S increases (+) and decreases (−)

F N

Normal force

F max

Maximum force in a force-displacement loop

F sam

Force exerted onto a resonator by a sample

F x

Tangential force

m q

Mass per unit area of the plate (m q  = ρ q d q  = Z q /(2f 0))

M R

Mass of a resonator

N P

Number of particles per unit area

R P

Particle radius

p

Pressure

ref

As an index: reference state

S

As an index: Surface

st

As an index: steady

t

Time

T

Period of oscillation

T g

Glass temperature

us

As an index: unsteady

u(t)

Displacement

û S , u S

Tangential displacement

u max

Maximum displacement in a force-displacement loop

u N

Normalized displacement (u N  = u S /u 0)

u 0

Amplitude of oscillation (equal to the absolute value of û S )

v

Velocity

x, y, z

Spatial coordinates

x

Displacement of a simple harmonic resonator

y

Auxiliary variable (Eq. 13.3.3)

Z q

Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)

α

Ratio of the normal and the tangential component of the plate’s motion (depends on position, x and y; Sect. 13.2)

γ D

Damping factor

Γ

Imaginary part of a resonance frequency

δ

Penetration depth of a shear wave (Newtonian liquids: δ = (2η liq /(ρ liq ω))1/2)

Δ

As a prefix: A shift induced by the presence of the sample

φ p v

Phases (Eq. 13.2.3)

η

Viscosity

κ

Spring constant

κ1, κ2, κ3

Coefficients in a power series of force versus displacement (κ1 is the conventional spring constant)

ϕ

Instantaneous phase (Eq. 13.3.6)

μ

Friction coefficient

μ D

Dynamic friction coefficient

ρ

Density

ω

Angular frequency

ω d

Damped angular resonance frequency

ω0

Undamped angular resonance frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Nonlinear Interactions. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_13

Download citation

Publish with us

Policies and ethics