Skip to main content

Point Contacts and Contact Stiffness

  • Chapter
  • First Online:
  • 2258 Accesses

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

If an external object (such as a sphere) touches the resonator surface across a contact with a diameter much below the wavelength of sound and, also, much below the size of the particle, one can infer the stiffness of the contact from the frequency shift. The situation is particularly transparent for particles, which are heavy enough to be clamped in space by inertia, so that they do not follow MHz motion of the resonator. In this case, the frequency shift is positive and proportional to the contact stiffness. Smaller particles give rise to coupled resonances. Coupled resonances can be viewed as absorption lines in shear-wave spectroscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435(7044), 929–932 (2005)

    Article  ADS  Google Scholar 

  2. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  3. Popov, V.L.: Contact Mechanics and Friction: Physical Principles and Applications. Springer, Berlin (2010)

    Book  Google Scholar 

  4. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  5. Hertz, H.R.: Üeber die Berüehrung elastischer Köerper. Gesammelte Werke, vol. 1, p.1895. J.A. Barth, Leipzig (1882)

    Google Scholar 

  6. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and contact of elastic solids. In: Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 324, no. 1558, p. 301 (1971)

    Google Scholar 

  7. del Campo, A., Greiner, C., Arzt, E.: Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23(20), 10235–10243 (2007)

    Article  Google Scholar 

  8. Hanke, S., Petri, J., Johannsmann, D.: Partial slip in mesoscale contacts: dependence on contact size. Phys. Rev. E 88(3), 032408 (2013)

    Google Scholar 

  9. Cattaneo, C.: Sul contatto di due corpi elastici: distribuzione locale dei sforzi. Rendiconti dell’ Academia Nationale dei Lincei 27, 474–478 (1938)

    Google Scholar 

  10. Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech.-Trans. Asme 20(3), 327–344 (1953)

    MathSciNet  MATH  Google Scholar 

  11. Berthier, Y., Vincent, L., Godet, M.: Fretting fatigue and fretting wear. Tribol. Int. 22(4), 235–242 (1989)

    Article  Google Scholar 

  12. Varenberg, M., Etsion, I., Halperin, G.: Nanoscale fretting wear study by scanning probe microscopy. Tribol. Lett. 18(4), 493–498 (2005)

    Article  Google Scholar 

  13. Savkoor, A.R.: Dry Adhesive Contact of Elastomers. Tech. University Delft, The Netherlands (1987)

    Google Scholar 

  14. Johnson, K.L.: Adhesion and friction between a smooth elastic spherical asperity and a plane surface. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 1997(453), 163–179 (1956)

    Google Scholar 

  15. Dybwad, G.L.: A sensitive new method for the determination of adhesive bonding between a particle and a substrate. J. Appl. Phys. 58(7), 2789–2790 (1985)

    Article  ADS  Google Scholar 

  16. Laschitsch, A., Johannsmann, D.: High frequency tribological investigations on quartz resonator surfaces. J. Appl. Phys. 85(7), 3759–3765 (1999)

    Article  ADS  Google Scholar 

  17. Vittorias, E., Kappl, M., Butt, H.J., Johannsmann, D.: Studying mechanical microcontacts of fine particles with the quartz crystal microbalance. Powder Technol. 203(3), 489–502 (2010)

    Article  Google Scholar 

  18. Akarapu, S., Sharp, T., Robbins, M.O.: Stiffness of contacts between rough surfaces. Phys. Rev. Lett. 106(20), 204301 (2011)

    Google Scholar 

  19. Leopoldes, J., Jia, X.: Probing viscoelastic properties of a thin polymer film sheared between a beads layer and an ultrasonic resonator. EPL 88(3), 34001 (2009)

    Google Scholar 

  20. Eriten, M., Lee, C.H., Polycarpou, A.A.: Measurements of tangential stiffness and damping of mechanical joints: direct versus indirect contact resonance methods. Tribol. Int. 50, 35–44 (2012)

    Article  Google Scholar 

  21. Rabe, U., Amelio, S., Kester, E., Scherer, V., Hirsekorn, S., Arnold, W.: Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38(1–8), 430–437 (2000)

    Article  Google Scholar 

  22. D’Amour, J.N., Stalgren, J.J.R., Kanazawa, K.K., Frank, C.W., Rodahl, M., Johannsmann, D.: Capillary aging of the contacts between glass spheres and a quartz resonator surface. Phys. Rev. Lett. 96(5), 058301 (2006)

    Google Scholar 

  23. Hornbaker, D.J., Albert, R., Albert, I., Barabasi, A.L., Schiffer, P.: What keeps sandcastles standing? Nature 387(6635), 765 (1997)

    Article  ADS  Google Scholar 

  24. Mason, T.G., Levine, A.J., Ertas, D., Halsey, T.C.: Critical angle of wet sandpiles. Phys. Rev. E 60(5), R5044–R5047 (1999)

    Article  ADS  Google Scholar 

  25. Butt, H.J., Graf, K., Kappl, M.: Physics and Chemistry of Interfaces. Wiley-VCH, Berlin (2006)

    Google Scholar 

  26. Bocquet, L., Charlaix, E., Ciliberto, S., Crassous, J.: Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396(6713), 735–737 (1998)

    Article  ADS  Google Scholar 

  27. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Berlin (2000)

    Book  Google Scholar 

  28. Berthoud, P., Baumberger, T.: Role of asperity creep in time- and velocity-dependent friction of a polymer glass. Europhys. Lett. 41(6), 617–622 (1998)

    Article  ADS  Google Scholar 

  29. Dieterich, J.H., Kilgore, B.D.: Direct observation of frictional contacts—new insights for state-dependent properties. Pure. Appl. Geophys. 143(1–3), 283–302 (1994)

    Article  ADS  Google Scholar 

  30. Pomorska, A., Shchukin, D., Hammond, R., Cooper, M.A., Grundmeier, G., Johannsmann, D.: Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase. Anal. Chem. 82(6), 2237–2242 (2010)

    Article  Google Scholar 

  31. Berglin, M., Olsson, A., Elwing, H.: The interaction between model biomaterial coatings and nylon microparticles as measured with a quartz crystal microbalance with dissipation monitoring. Macromol. Biosci. 8(5), 410–416 (2008)

    Article  Google Scholar 

  32. Fatisson, J., Domingos, R.F., Wilkinson, K.J., Tufenkji, N.: Deposition of TiO(2) nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. Langmuir 25(11), 6062–6069 (2009)

    Article  Google Scholar 

  33. Zhang, Q.L., Lec, R.M., Pourrezaei, K.: The study of an interaction of solid particles with various surfaces using TSM sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 167–174 (2006)

    Article  Google Scholar 

  34. Olofsson, A.C., Hermansson, M., Elwing, H.: Use of a quartz crystal microbalance to investigate the antiadhesive potential of N-acetyl-L-cysteine. Appl. Environ. Microbiol. 71(5), 2705–2712 (2005)

    Article  Google Scholar 

  35. Olsen, E.V., Pathirana, S.T., Samoylov, A.M., Barbaree, J.M., Chin, B.A., Neely, W.C., Vodyanoy, V.: Specific and selective biosensor for Salmonella and its detection in the environment. J. Microbiol. Methods 53(2), 273–285 (2003)

    Article  Google Scholar 

  36. Olsson, A.L.J., van der Mei, H.C., Busscher, H.J., Sharma, P.K.: Acoustic sensing of the bacterium-substratum interface using QCM-D and the influence of extracellular polymeric substances. J. Colloid Interface Sci. 357(1), 135–138 (2011)

    Article  Google Scholar 

  37. Poitras, C., Tufenkji, N.: A QCM-D-based biosensor for E.coli O157:H7 highlighting the relevance of the dissipation slope as a transduction signal. Biosens. Bioelectron. 24(7), 2137–2142 (2009)

    Article  Google Scholar 

  38. Su, X.L., Li, Y.B.: A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance. Biosens. Bioelectron. 21(6), 840–848 (2005)

    Article  MathSciNet  Google Scholar 

  39. Vaughan, R.D., O’Sullivan, C.K., Guilbault, G.G.: Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzyme Microb. Technol. 29(10), 635–638 (2001)

    Article  Google Scholar 

  40. Molino, P.J., Hodson, O.A., Quinn, J.F., Wetherbee, R.: The quartz crystal microbalance: a new tool for the investigation of the bioadhesion of diatoms to surfaces of differing surface energies. Langmuir 24(13), 6730–6737 (2008)

    Article  Google Scholar 

  41. Poitras, C., Fatisson, J., Tufenkji, N.: Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents. Water Res. 43(10), 2631–2638 (2009)

    Article  Google Scholar 

  42. Olsson, A.L.J., van der Mei, H.C., Johannsmann, D., Busscher, H.J., Sharma, P.K.: Probing colloid-substratum contact stiffness by acoustic sensing in a liquid phase. Anal. Chem. 84(10), 4504–4512 (2012)

    Article  Google Scholar 

  43. D’Amour, J.N., Stalgren, J.J.R, Kanazawa, K.K., Frank, C.W., Rodahl, M., Johannsmann, D.: Capillary aging of the contacts between glass spheres and a quartz resonator surface. Phys. Rev. Lett. 96(5), 058301 (2006)

    Google Scholar 

  44. Du, B.Y., Konig, A.M., Johannsmann, D.: On the role of capillary instabilities in the sandcastle effect. New J. Phys. 10 053014 (2008)

    Google Scholar 

  45. Forrest, J.A., Mattsson, J., Borjesson, L.: Using adhesion to probe viscoelasticity of polymer film surfaces: a quartz crystal microbalance study. Eur. Phys. J. E 8(2), 129–136 (2002)

    Article  Google Scholar 

  46. Vigasin, A.A.: Intensity and bandshapes of collision-induced absorption by CO2 in the region of the Fermi doublet. J. Mol. Spectrosc. 200(1), 89–95 (2000)

    Article  ADS  Google Scholar 

  47. Krim, J., Solina, D.H., Chiarello, R.: Nanotribology of a Kr Monolayer—a quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 66(2), 181–184 (1991)

    Article  ADS  Google Scholar 

  48. Watts, E.T., Krim, J., Widom, A.: Experimental-observation of interfacial slippage at the boundary of molecularly thin-films with gold substrates. Phys. Rev. B 41(6), 3466–3472 (1990)

    Article  ADS  Google Scholar 

  49. Bruschi, L., Carlin, A., Mistura, G.: Depinning of atomically thin Kr films on gold. Phys. Rev. Lett. 88(4), 046105 (2002)

    Google Scholar 

  50. Krim, J.: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv. Phys. 61(3), 155–323 (2012)

    Article  ADS  Google Scholar 

  51. Chandler, D.: Introduction to modern statistical mechanics. Oxford University Press, Oxford (1987)

    Google Scholar 

  52. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, Non-Relativistic Theory. Elsevier, Oxford (1997)

    Google Scholar 

  53. Rayleigh, L.: Theory of Sound. Macmillan, London (1894). Note: The theory of scattering underlying section 11.7 was developed by the 3rd Lord Rayleigh to explain acoustic scattering. Admittedly, Rayleigh was concerned with compressional waves, not shear waves

    Google Scholar 

  54. Baumberger, T., Caroli, C.: Solid friction from stick-slip down to pinning and aging. Adv. Phys. 55(3–4), 279–348 (2006)

    Article  ADS  Google Scholar 

  55. Akarapu, S., Sharp, T., Robbins, M.O.: Stiffness of Contacts between Rough Surfaces. Phys. Rev. Lett. 106(20), 204301 (2011)

    Google Scholar 

  56. Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61(4), 201–227 (2006)

    Article  ADS  Google Scholar 

  57. Kendall, K., Tabor, D.: Ultrasonic study of area of contact between stationary and sliding surfaces. Proc. R. Soc. Lond. A: Math. Phys. Sci. 323(1554), 321 (1971)

    Article  ADS  Google Scholar 

  58. Krolikowski, J., Szczepek, J.: Assessment of tangential and normal stiffness of contact between rough surfaces using ultrasonic method. Wear 160(2), 253–258 (1993)

    Article  ADS  Google Scholar 

  59. Baik, J.-M., Thompson, R.B.: Ultrasonic scattering from imperfect interfaces: a quasi-static model. J. Nondestr. Eval. 4, 177 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethelm Johannsmann .

Glossary

Variable

Definition (Comments)

0

As in index: undamped (Exception: f 0)

a

Contact radius

A

(Effective) area of the resonator plate (See Sect. 7.4)

sc

Scattering length (Sect. 11.7)

b shear , b bend

Numerical coefficients

(Eq. 11.5.4)

D

Diffusivity (Sect. 11.6)

E

Young’s modulus

E*

Effective Young’s modulus (Eq. 11.2.2)

f

Frequency

f OS

Oscillator strength (a number, not a frequency)

f ZC

Frequency of zero-crossing (Eq. 11.4.7)

f 0

Resonance frequency at the fundamental (f 0 = Z q /(2m q ) = Z q /(2ρ q d q ))

F N

Normal force

F x

Tangential force

g

Standard acceleration (g = 9.81 m/s2)

G

Shear modulus

G*

Effective shear modulus (Eq. 11.2.12)

het

As an index: heterogeneously broadened (Sect. 11.4)

intf

As an index: interface (Sect. 11.8)

I

Moment of area (Eq. 11.2.12)

k

Wavenumber

k B T

Thermal energy

liq

As an index: liquid

M

Mass

n

Overtone order

N P

Number of particles per unit area

p

Normal stress

P

As an index: Particle

PD

As an index: Polar Diagram

r

Distance from the center of a contact, distance from a scattering center

rock

As in index: rocking mode

rot

As in index: rotational mode

R P

Particle radius

R PD

Radius of circle in polar diagram (Eq. 11.5.7)

q,S

Reflectivity evaluated at the resonator surface (Sect. 11.7)

r S

Location at the resonator surface

r S

In-plane distance from the scattering center (Sect. 11.7)

S

As an index: Surface

Contact stiffness (Sect. 11.8)

s c

As an index: scattered (Sect. 11.7)

û,u

Tangential displacement

Velocity

L

Load impedance

Z q

Acoustic wave impedance of AT-cut quartz (Z q  = 8.8 × 106 kg m−2 s−1)

γ P

Damping factor of a coupled resonance (Sect. 11.4)

γ S

Surface energy (Sect. 11.2)

Γ

Imaginary part of a resonance frequency

δ N

Normal compression (Fig. 11.2)

δ scm

Scattering phase (Sect. 11.7)

Δ

As a prefix: A shift induced by the presence of the sample

k

Spring constant

µ

Friction coefficient (µ = F x /F N )

ν

Poisson number

θ

Angle of rotation

ρ

Density

σ

Tangential stress

τ MR

Momentum relaxation time (also: slip time Sect. 11.6)

τ S

A constant tangential stress in the sliding zone of a contact experiencing partial slip (Sect. 11.2)

ξ

Drag coefficient

ω

Angular frequency

ω P

Particle resonance frequency

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johannsmann, D. (2015). Point Contacts and Contact Stiffness. In: The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-07836-6_11

Download citation

Publish with us

Policies and ethics