Introduction

Chapter

Abstract

The QCM is an amazingly simple device. It consists of a disk of crystalline quartz. The acoustic resonances of this plate can be excited electrically because crystalline quartz is piezoelectric. The main application of quartz resonators is in time and frequency control. However, the resonance frequency and the resonance bandwidth depend on the resonator’s environment and the plate can therefore be used as a frequency-based sensor. The chapter gives a brief tour through the modeling process, mostly building on the parallel plate and emphasizing the small load approximation (SLA). Models beyond the parallel plate as well as refinements of the SLA are also discussed. The chapter concludes with an overview of applications.

References

  1. 1.
    http://de.wikipedia.org/wiki/Schwingquarz, Accessed 6 Feb 2013. The number of 4.5 billion USD includes all piezoelectric resonators (including tuneforks)
  2. 2.
  3. 3.
  4. 4.
    Dava Sobel: Longitude: The True Story of a Lone Genius who Solved the Greatest Scientific Problem of His Time. Penguin, New York (1996)Google Scholar
  5. 5.
  6. 6.
    Galliou, S., Goryachev, M., Bourquin, R., Abbe, P., Aubry, J.P., Tobar, M.E.: Extremely low loss phonon-trapping cryogenic acoustic cavities for future physical experiments. Sci. Rep. 3, 2132 (2013)Google Scholar
  7. 7.
    Nicholson, A.M.: Generating and transmitting electric currents U.S. Patent 2,212,845, filed Apr 10, 1918, granted Aug 27, 1940Google Scholar
  8. 8.
  9. 9.
    Marrison, W.A.: The Crystal Clock. Nat. Acad. Sci. Proc. 16, 496–507 (1930)ADSCrossRefGoogle Scholar
  10. 10.
    Marrison, W.A.: The evolution of the quartz crystal clock. Bell Sys. Tech. J. 27, 510–588 (1948) (Reprint online)Google Scholar
  11. 11.
    Koga, I.: Thickness vibrations of piezoelectric oscillating crystals. Phys A J. Gen. App. Phys. 3(1), 70–80 (1932)MATHMathSciNetGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
    Iwasaki, F., Iwasaki, H.: Historical review of quartz crystal growth. J. Cryst. Growth 237, 820–827 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    For an overview see Piazza: G.; Felmetsger, V.; Muralt, P.; Olsson, R.H.; Ruby, R., Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull. 37(11), 1051–1061 (2012)CrossRefGoogle Scholar
  18. 18.
    Chen, D., Wang, J.J., Xu, Y., Li, D.H., Zhang, L.Y., Li, Z.X.: Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor. Biosens. Bioelectron. 41, 163–167 (2013)CrossRefGoogle Scholar
  19. 19.
    Nirschel, M.: Label-free Biosensors: Thin-film Bulk Acoustic Resonators: Theory and Application of FBARs for Biomolecular Interaction. Südwestdeutscher Verlag für Hochschulschriften (2012)Google Scholar
  20. 20.
    Wingqvist, G.: AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—A review. Surf. Coat. Technol. 205(5), 1279–1286 (2010)CrossRefGoogle Scholar
  21. 21.
    Wingqvist, G., Bjurstrom, J., Liljeholm, L., Yantchev, V., Katardjiev, I.: Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sens. Actuators B Chem. 123(1), 466–473 (2007)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    http://www.oscilloquartz.com/, Accessed 28 Mar 2013
  24. 24.
    Hinkley, N., Sherman, J. A., Phillips, N. B., Schioppo, M., Lemke, N. D., Beloy, K., Pizzocaro, M., Oates, C. W., Ludlow, A. D.: An Atomic Clock with 10–18 Instability. Science 341, 1215–1218 (2013)Google Scholar
  25. 25.
  26. 26.
    EerNisse, E.P., Wiggins, R.B.: Review of thickness-shear mode quartz resonator sensors for temperature and pressure. IEEE Sens. J. 1(1), 79–87 (2001)CrossRefGoogle Scholar
  27. 27.
    Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 155(2), 206–222 (1959)ADSCrossRefGoogle Scholar
  28. 28.
    Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6(4), 583–586 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 300–303 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Brice, J.C.: Crystals for Quartz Resonators. Rev. Mod. Phys. 57(1), 105–146 (1985)Google Scholar
  31. 31.
    Su, X.D., Ng, H.T., Dai, C.C., O’Shea, S.J., Li, S.F.Y.: Disposable, low cost, silver-coated, piezoelectric quartz crystal biosensor and electrode protection. Analyst 125(12), 2268–2273 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Mason, W.P., Baker, W.O., McSkimin, H.J., Heiss, J.H.: Mechanical Properties of Long Chain Molecule Liquids at Ultrasonic Frequencies. Phys. Rev. 73(9), 1074–1091 (1948)Google Scholar
  33. 33.
    McSkimin, H.J.: Measurement of Dynamic Shear Viscosity and Stiffness of Viscous Liquids by Means of Traveling Torsional Waves. J. Acoust. Soc. Am. 24(4), 355–365 (1952)Google Scholar
  34. 34.
    Mason, W.P., Baker, W.O., McSkimin, H.J., Heiss, J.H.: Measurement of Shear Elasticity and Viscosity of Liquids at Ultrasonic Frequencies. Phys. Rev. 75(6), 936–946 (1949)Google Scholar
  35. 35.
    McSkimin, H.J.: Measurement of the Shear Impedance of Viscous Liquids by Means of Traveling Torsional Waves. J. Acoust. Soc. Am. 24(1), 117 (1952)Google Scholar
  36. 36.
    Mason, W.P.: Piezoelectric Crystals and Their Applications to Ultrasonics. Princeton, Van Nostrand (1948)Google Scholar
  37. 37.
    Nomura, T., Okuhara, M.: Frequency-shifts of piezoelectric quartz crystals immersed in organic liquids. Analytica Chimica Acta, 142, 281–284 (1982)Google Scholar
  38. 38.
    Nomura, T., Hattori, O.: Determination of micromolar concentrations of cyanide in solution with a piezoelectric detector. Analytica Chimica Acta, 115, 323–326 (1980)Google Scholar
  39. 39.
    Bruckenstein, S., Shay, M.: Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim. Acta 30(10), 1295–1300 (1985)CrossRefGoogle Scholar
  40. 40.
    Buttry, D.A., Ward, M.D.: Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92(6), 1355–1379 (1992)CrossRefGoogle Scholar
  41. 41.
    Schumacher, R.: The quartz microbalance—a novel-approach to the insitu investigation of interfacial phenomena at the solid liquid junction. Angew. Chem. Int. Eng. 29(4), 329–343 (1990)CrossRefGoogle Scholar
  42. 42.
    Thompson, M., Kipling, A.L., Duncanhewitt, W.C., Rajakovic, L.V., Cavicvlasak, B.A.: Thickness-shear-mode acoustic-wave sensors in the liquid-phase—a review. Analyst 116(9), 881–890 (1991)ADSCrossRefGoogle Scholar
  43. 43.
    Janshoff, A., Galla, H.J., Steinem, C.: Piezoelectric mass-sensing devices as biosensors—An alternative to optical biosensors? Angew. Chem. Int. Eng. 39(22), 4004–4032 (2000)CrossRefGoogle Scholar
  44. 44.
    Bunde, R.L., Jarvi, E.J., Rosentreter, J.J.: Piezoelectric quartz crystal biosensors. Talanta 46(6), 1223–1236 (1998)CrossRefGoogle Scholar
  45. 45.
    Marx, K.A.: Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4(5), 1099–1120 (2003)CrossRefGoogle Scholar
  46. 46.
    Rickert, J., Brecht, A., Gopel, W.: Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens. Bioelectron. 12(7), 567–575 (1997)CrossRefGoogle Scholar
  47. 47.
    Konash, P.L., Bastiaans, G.J.: Piezoelectric-crystals as detectors in liquid-chromatography. Anal. Chem. 52(12), 1929–1931 (1980)CrossRefGoogle Scholar
  48. 48.
    Alder, J.F., McCallum, J.J.: Piezoelectric-crystals for mass and chemical measurements—a review. Analyst 108(1291), 1169–1189 (1983)ADSCrossRefGoogle Scholar
  49. 49.
    Mieure, J.P., Jones, J.L.: Electrogravimetric trace analysis on a piezoelectric detector. Talanta 16(1), 149 (1969)CrossRefGoogle Scholar
  50. 50.
    Jones, J.L., Mieure, J.P.: A piezoelectric transducer for determination of metals at micromolar level. Anal. Chem. 41(3), 484 (1969)CrossRefGoogle Scholar
  51. 51.
    Borovikov, A.P.: Measurement of viscosity of media by means of shear vibration of plane piezoresonators. Instrum. Exp. Tech. 19(1), 223–224 (1976)Google Scholar
  52. 52.
    Tabidze, A.A., Kazakov, R.K.: High-frequency ultrasonic unit for measuring the complex shear modulus of liquids. Meas. Tech. USSR 26(1), 24–27 (1983)CrossRefGoogle Scholar
  53. 53.
    Pechhold, W.: Eine Methode zur Messung des Komplexen Schubmoduls im Frequenzbereich 1–100 kHz. Acustica 9, 39 (1959)Google Scholar
  54. 54.
    Rodahl, M., Hook, F., Krozer, A., Brzezinski, P., Kasemo, B.: Quartz-crystal microbalance setup for frequency and q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66(7), 3924–3930 (1995)ADSCrossRefGoogle Scholar
  55. 55.
    Hirao, M., Ogi, H., Fukuoka, H.: Resonance emat system for acoustoelastic stress measurement in sheet metals. Rev. Sci. Instrum. 64(11), 3198–3205 (1993)ADSCrossRefGoogle Scholar
  56. 56.
    Sittel, K., Rouse, P.E., Bailey, E.D.: Method for determining the viscoelastic properties of dilute polymer solutions at audio-frequencies. J. Appl. Phys. 25(10), 1312–1320 (1954)ADSCrossRefGoogle Scholar
  57. 57.
    Lucklum, R., Hauptmann, P.: Acoustic microsensors-the challenge behind microgravimetry. Anal. Bioanal. Chem. 384(3), 667–682 (2006)CrossRefGoogle Scholar
  58. 58.
    Martin, S.J., Granstaff, V.E., Frye, G.C.: Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63(20), 2272–2281 (1991)CrossRefGoogle Scholar
  59. 59.
    Kanazawa, K.K., Gordon, J.G.: Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57(8), 1770–1771 (1985)CrossRefGoogle Scholar
  60. 60.
    Stockbridge, C.D.: In: Behrndt, K.H. (eds.) Vacuum Microbalance Techniques, 4 edn., Vol. 5 Plenum Press, New York (1966)Google Scholar
  61. 61.
    Glassford, A.P.M.: Response of a Quartz Crystal Microbalance to a Liquid Deposit. J. Vac. Sci. Tech. 15(6), 1836–1843 (1978)ADSCrossRefGoogle Scholar
  62. 62.
  63. 63.
    Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)ADSCrossRefMATHGoogle Scholar
  64. 64.
    Woan, G.: The Cambridge Handbook of Physics Formulas. Cambridge University Press, Cambridge (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Physical ChemistryClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations