Skip to main content

Mining and Using Sets of Patterns through Compression

Abstract

In this chapter we describe how to successfully apply the MDL principle to pattern mining. In particular, we discuss how pattern-based models can be designed and induced by means of compression, resulting in succinct and characteristic descriptions of the data.

As motivation, we argue that traditional pattern mining asks the wrong question: instead of asking for all patterns satisfying some interestingness measure, one should ask for a small, non-redundant, and interesting set of patterns—which allows us to avoid the pattern explosion. Firmly rooted in algorithmic information theory, the approach we discuss in this chapter states that the best set of patterns is that set that compresses the data best. We formalize this problem using the Minimum Description Length (MDL) principle, describe useful model classes, and briefly discuss algorithmic approaches to inducing good models from data. Last but not least, we describe how the obtained models—in addition to showing the key patterns of the data—can be used for a wide range of data mining tasks; hence showing that MDL selects useful patterns.

Keywords

  • Compression
  • MDL
  • Pattern set mining
  • Data summarization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07821-2_8
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07821-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3

Notes

  1. 1.

    See Chap. 5 for a detailed overview of interestingness measures.

  2. 2.

    MDL-theorists tend to talk about hypotheses in this context

  3. 3.

    See Chap. 5 for a more complete discussion on MaxEnt.

References

  1. P. Adriaans and P. Vitányi. Approximation of the two-part MDL code. IEEE TIT, 55(1):444–457, 2009.

    Google Scholar 

  2. H. Akaike. A new look at the statistical model identification. IEEE TAC, 19(6):716–723, 1974.

    MATH  MathSciNet  Google Scholar 

  3. L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos. CompreX (refer MSP): Compression based anomaly detection. In CIKM. ACM, 2012.

    Google Scholar 

  4. L. Akoglu, J. Vreeken, H. Tong, N. Tatti, and C. Faloutsos. Mining connection pathways for marked nodes in large graphs. In SDM. SIAM, 2013.

    Google Scholar 

  5. R. Bathoorn, A. Koopman, and A. Siebes. Reducing the frequent pattern set. In ICDM-Workshop, pages 1–5, 2006.

    Google Scholar 

  6. C. Böhm, C. Faloutsos, J.-Y. Pan, and C. Plant. Robust information-theoretic clustering. In KDD, pages 65–75, 2006.

    Google Scholar 

  7. F. Bonchi, M. van Leeuwen, and A. Ukkonen. Characterizing uncertain data using compression. In SDM, pages 534–545, 2011.

    Google Scholar 

  8. S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using temporal description length. In VLDB, pages 606–617. Morgan Kaufmann, 1998.

    Google Scholar 

  9. D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-associations. In KDD, pages 79–88, 2004.

    Google Scholar 

  10. V. Chandola and V. Kumar. Summarization – compressing data into an informative representation. Knowl. Inf. Sys., 12(3):355–378, 2007.

    CrossRef  Google Scholar 

  11. R. Cilibrasi and P. Vitányi. Clustering by compression. IEEE TIT, 51(4):1523–1545, 2005.

    Google Scholar 

  12. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience New York, 2006.

    Google Scholar 

  13. T. De Bie. An information theoretic framework for data mining. In KDD, pages 564–572. ACM, 2011.

    Google Scholar 

  14. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. B, 39(1):1–38, 1977.

    MATH  MathSciNet  Google Scholar 

  15. C. Faloutsos and V. Megalooikonomou. On data mining, compression and Kolmogorov complexity. Data Min. Knowl. Disc., 15(1):3–20, 2007.

    CrossRef  MathSciNet  Google Scholar 

  16. U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In UAI, pages 1022–1027, 1993.

    Google Scholar 

  17. R. A. Fisher. On the interpretation of χ2from contingency tables, and the calculation of P. Journal of the Royal Statistical Society, 85(1):87–94, 1922.

    CrossRef  Google Scholar 

  18. F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In DS, pages 278–289, 2004.

    Google Scholar 

  19. A. Gionis, H. Mannila, and J. K. Seppänen. Geometric and combinatorial tiles in 0-1 data. In PKDD, pages 173–184. Springer, 2004.

    Google Scholar 

  20. P. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.

    Google Scholar 

  21. T. Guns, S. Nijssen, and L. D. Raedt. Itemset mining: A constraint programming perspective. Artif. Intell., 175(12-13):1951–1983, 2011.

    CrossRef  MATH  Google Scholar 

  22. E. Halperin and R. M. Karp. The minimum-entropy set cover problem. TCS, 348(2-3):240–250, 2005.

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. H. Heikinheimo, J. K. Seppänen, E. Hinkkanen, H. Mannila, and T. Mielikäinen. Finding low-entropy sets and trees from binary data. In KDD, pages 350–359, 2007.

    Google Scholar 

  24. H. Heikinheimo, J. Vreeken, A. Siebes, and H. Mannila. Lowentropy set selection. In SDM, pages 569–580, 2009.

    Google Scholar 

  25. E. Jaynes. On the rationale of maximum-entropy methods. Proc. IEEE, 70(9):939–952, 1982.

    CrossRef  Google Scholar 

  26. U. Kang and C. Faloutsos. Beyond caveman communities: Hubs and spokes for graph compression and mining. In ICDM, pages 300–309. IEEE, 2011.

    Google Scholar 

  27. R. M. Karp. Reducibility among combinatorial problems. In Proc. Compl. Comp. Comput., pages 85–103, New York, USA, 1972.

    Google Scholar 

  28. E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data mining. In KDD, pages 206–215, 2004.

    Google Scholar 

  29. E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S.-H. Lee, and J. Handley. Compression-based data mining of sequential data. Data Min. Knowl. Disc., 14(1):99–129, 2007.

    CrossRef  MathSciNet  Google Scholar 

  30. P. Kontkanen and P. Myllymäki. A linear-time algorithm for computing the multinomial stochastic complexity. Inf. Process. Lett., 103(6):227–233, 2007.

    CrossRef  MATH  Google Scholar 

  31. P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen, and H. Tirri. An MDL framework for clustering. Technical report, HIIT, 2004. Technical Report 2004–6.

    Google Scholar 

  32. A. Koopman and A. Siebes. Discovering relational items sets efficiently. In SDM, pages 108–119, 2008.

    Google Scholar 

  33. A. Koopman and A. Siebes. Characteristic relational patterns. In KDD, pages 437–446, 2009.

    Google Scholar 

  34. H. T. Lam, F. Mörchen, D. Fradkin, and T. Calders. Mining compressing sequential patterns. In SDM, 2012.

    Google Scholar 

  35. H. T. Lam, T. Calders, J. Yang, F. Moerchen, and D. Fradkin.: Mining compressing sequential patterns in streams. In IDEA, pages 54–62, 2013.

    Google Scholar 

  36. M. van Leeuwen and A. Siebes. StreamKrimp: Detecting change in data streams. In ECML PKDD, pages 672–687, 2008.

    Google Scholar 

  37. M. van Leeuwen, J. Vreeken, and A. Siebes. Compression picks the item sets that matter. In PKDD, pages 585–592, 2006.

    Google Scholar 

  38. M. van Leeuwen, F. Bonchi, B. Sigurbjörnsson, and A. Siebes. Compressing tags to find interesting media groups. In CIKM, pages 1147–1156, 2009.

    Google Scholar 

  39. M. van Leeuwen, J. Vreeken, and A. Siebes. Identifying the components. Data Min. Knowl. Disc., 19(2):173–292, 2009.

    CrossRef  MathSciNet  Google Scholar 

  40. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer, 1993.

    Google Scholar 

  41. M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi. The similarity metric. IEEE TIT, 50(12): 3250–3264, 2004.

    MathSciNet  Google Scholar 

  42. C. Lucchese, S. Orlando, and R. Perego. Mining top-k patterns from binary datasets in presence of noise. In SDM, pages 165–176, 2010.

    Google Scholar 

  43. M. Mampaey and J. Vreeken. Summarising categorical data by clustering attributes. Data Min. Knowl. Disc., 26(1):130–173, 2013.

    CrossRef  MATH  MathSciNet  Google Scholar 

  44. M. Mampaey, J. Vreeken, and N. Tatti. Summarizing data succinctly with the most informative itemsets. ACM TKDD, 6:1–44, 2012.

    CrossRef  Google Scholar 

  45. P. Miettinen and J. Vreeken. Model order selection for Boolean matrix factorization. In KDD, pages 51–59. ACM, 2011.

    Google Scholar 

  46. P. Miettinen and J. Vreeken. mdl4bmf: Minimum description length for Boolean matrix factorization. ACM TKDD. In Press.

    Google Scholar 

  47. S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu. Hierarchical, parameter-free community discovery. In ECML PKDD, pages 170–187, 2008.

    Google Scholar 

  48. B. Pfahringer. Compression-based feature subset selection. In Proc. IJCAI'95 Workshop on Data Engineering for Inductive Learning, pages 109–119, 1995.

    Google Scholar 

  49. B. A. Prakash, J. Vreeken, and C. Faloutsos. Spotting culprits in epidemics: How many and which ones? In ICDM. IEEE, 2012.

    Google Scholar 

  50. J. Quinlan. C4.5: Programs for Machine Learning. Morgan-Kaufmann, Los Altos, California, 1993.

    Google Scholar 

  51. L. D. Raedt. Declarative modeling for machine learning and data mining. In ECML PKDD, pages 2–3, 2012.

    Google Scholar 

  52. J. Rissanen. Modeling by shortest data description. Automatica, 14(1):465–471, 1978.

    CrossRef  MATH  Google Scholar 

  53. G. Schwarz. Estimating the dimension of a model. Annals Stat., 6(2):461–464, 1978.

    CrossRef  MATH  Google Scholar 

  54. H. Shao, B. Tong, and E. Suzuki. Extended MDL principle for feature-based inductive transfer learning. Knowl. Inf. Sys., 35(2):365–389, 2013.

    CrossRef  Google Scholar 

  55. A. Siebes. Queries for data analysis. In IDA, pages 7–22, 2012.

    Google Scholar 

  56. A. Siebes and R. Kersten. A structure function for transaction data. In SDM, pages 558–569. SIAM, 2011.

    Google Scholar 

  57. A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In SDM, pages 393–404. SIAM, 2006.

    Google Scholar 

  58. K. Smets and J. Vreeken. The odd one out: Identifying and characterising anomalies. In SDM, pages 804–815. SIAM, 2011.

    Google Scholar 

  59. K. Smets and J. Vreeken. Slim: Directly mining descriptive patterns. In SDM, pages 236–247. SIAM, 2012.

    Google Scholar 

  60. J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. Graphscope: parameter-free mining of large time-evolving graphs. In KDD, pages 687–696, 2007.

    Google Scholar 

  61. N. Tatti. Computational complexity of queries based on itemsets. Inf. Process. Lett., 98(5): 183–187, 2006.

    CrossRef  MATH  MathSciNet  Google Scholar 

  62. N. Tatti and J. Vreeken. Finding good itemsets by packing data. In ICDM, pages 588–597, 2008.

    Google Scholar 

  63. N. Tatti and J. Vreeken. Discovering descriptive tile trees by fast mining of optimal geometric subtiles. In ECML PKDD. Springer, 2012.

    Google Scholar 

  64. N. Tatti and J. Vreeken. The long and the short of it: Summarizing event sequences with serial episodes. In KDD. ACM, 2012.

    Google Scholar 

  65. J. Vreeken and A. Siebes. Filling in the blanks: Krimp minimisation for missing data. In ICDM, pages 1067–1072. IEEE, 2008.

    Google Scholar 

  66. J. Vreeken, M. van Leeuwen, and A. Siebes. Characterising the difference. In KDD, pages 765–774, 2007.

    Google Scholar 

  67. J. Vreeken, M. van Leeuwen, and A. Siebes. Preserving privacy through data generation. In ICDM, pages 685–690. IEEE, 2007.

    Google Scholar 

  68. J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: Mining itemsets that compress. Data Min. Knowl. Disc., 23(1):169–214, 2011.

    CrossRef  MATH  Google Scholar 

  69. C. Wallace. Statistical and inductive inference by minimum message length. Springer-Verlag, 2005.

    Google Scholar 

  70. C. Wang and S. Parthasarathy. Summarizing itemset patterns using probabilistic models. In KDD, pages 730–735, 2006.

    Google Scholar 

  71. H. Warner, A. Toronto, L. Veasey, and R. Stephenson. A mathematical model for medical diagnosis, application to congenital heart disease. J. Am. Med. Assoc., 177:177–184, 1961.

    CrossRef  Google Scholar 

Download references

Acknowledgments

Matthijs van Leeuwen is supported by a Post-doctoral Fellowship of the Research Foundation Flanders (fwo). Jilles Vreeken is supported by the Cluster of Excellence “Multimodal Computing and Interaction” within the Excellence Initiative of the German Federal Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthijs van Leeuwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Leeuwen, M., Vreeken, J. (2014). Mining and Using Sets of Patterns through Compression. In: Aggarwal, C., Han, J. (eds) Frequent Pattern Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-07821-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07821-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07820-5

  • Online ISBN: 978-3-319-07821-2

  • eBook Packages: Computer ScienceComputer Science (R0)