Interesting Patterns

Chapter

Abstract

Pattern mining is one of the most important aspects of data mining. By far the most popular and well-known approach is frequent pattern mining. That is, to discover patterns that occur in many transactions. This approach has many virtues including monotonicity, which allows efficient discovery of all frequent patterns. Nevertheless, in practice frequent pattern mining rarely gives good results—the number of discovered patterns is typically gargantuan and they are heavily redundant.

Consequently, a lot of research effort has been invested toward improving the quality of the discovered patterns. In this chapter we will give an overview of the interestingness measures and other redundancy reduction techniques that have been proposed to this end.

In particular, we first present classic techniques such as closed and non-derivable itemsets that are used to prune unnecessary itemsets. We then discuss techniques for ranking patterns on how expected their score is under a null hypothesis—considering patterns that deviate from this expectation to be interesting. These models can either be static, as well as dynamic; we can iteratively update this model as we discover new patterns. More generally, we also give a brief overview on pattern set mining techniques, where we measure quality over a set of patterns, instead of individually. This setup gives us freedom to explicitly punish redundancy which leads to a more to-the-point results.

Keywords

Pattern mining Interestingness measures Statistics Ranking Pattern set mining 

References

  1. 1.
    R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB, pages 487–499, 1994.Google Scholar
  2. 2.
    C. C. Aggarwal and P. S. Yu. A new framework for itemset generation. In PODS, pages 18–24. ACM, 1998.Google Scholar
  3. 3.
    R. Agrawal, T. Imielinksi, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, pages 207–216. ACM, 1993.Google Scholar
  4. 4.
    M. Al Hasan and M. J. Zaki. Output space sampling for graph patterns. PVLDB, 2(1):730–741, 2009.Google Scholar
  5. 5.
    M. Al Hasan, V. Chaoji, S. Salem, J. Besson, and M. J. Zaki. Origami: Mining representative orthogonal graph patterns. In ICDM, pages 153–162. IEEE, 2007.Google Scholar
  6. 6.
    R. Bayardo. Efficiently mining long patterns from databases. In SIGMOD, pages 85–93, 1998.Google Scholar
  7. 7.
    M. Boley, C. Lucchese, D. Paurat, and T. Gärtner. Direct local pattern sampling by efficient two-step random procedures. In KDD, pages 582–590. ACM, 2011.Google Scholar
  8. 8.
    M. Boley, S. Moens, and T. Gärtner. Linear space direct pattern sampling using coupling from the past. In KDD, pages 69–77. ACM, 2012.Google Scholar
  9. 9.
    J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representation of boolean data for the approximation of frequency queries. Data Min. Knowl. Disc., 7(1):5–22, 2003.CrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing association rules to correlations. In SIGMOD, pages 265–276. ACM, 1997.Google Scholar
  11. 11.
    D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu. MAFIA: A maximal frequent itemset algorithm. IEEE TKDE, 17(11):1490–1504, 2005.Google Scholar
  12. 12.
    T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In PKDD, pages 74–85, 2002.Google Scholar
  13. 13.
    C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE TIT, 14(3):462–467, 1968.MATHMathSciNetGoogle Scholar
  14. 14.
    E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman, and C. Yang. Finding interesting associations without support pruning. IEEE TKDE, 13(1):64–78, 2001.Google Scholar
  15. 15.
    R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic networks and expert systems. In Statistics for Engineering and Information Science. Springer-Verlag, 1999.Google Scholar
  16. 16.
    I. Csiszár. I-divergence geometry of probability distributions and minimization problems. Annals Prob., 3(1):146–158, 1975.Google Scholar
  17. 17.
    T. De Bie. An information theoretic framework for data mining. In KDD, pages 564–572. ACM, 2011.Google Scholar
  18. 18.
    T. De Bie. Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Min. Knowl. Disc., 23(3):407–446, 2011.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    R. A. Fisher. On the interpretation of χ2from contingency tables, and the calculation of P. J. R. Statist. Soc., 85(1):87–94, 1922.CrossRefGoogle Scholar
  20. 20.
    A. Gallo, N. Cristianini, and T. De Bie. MINI: Mining informative non-redundant itemsets. In ECML PKDD, pages 438–445. Springer, 2007.Google Scholar
  21. 21.
    F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In DS, pages 278–289, 2004.Google Scholar
  22. 22.
    A. Gionis, H. Mannila, and J. K. Seppänen. Geometric and combinatorial tiles in 0-1 data. In PKDD, pages 173–184. Springer, 2004.Google Scholar
  23. 23.
    A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data mining results via swap randomization. TKDD, 1(3):167–176, 2007.CrossRefGoogle Scholar
  24. 24.
    B. Goethals and M. Zaki. Frequent itemset mining dataset repository (FIMI). http://fimi.ua.ac.be/, 2004.
  25. 25.
    W. Hämäläinen. Kingfisher: an efficient algorithm for searching for both positive and negative dependency rules with statistical significance measures. Knowl. Inf. Sys., 32(2):383–414, 2012.Google Scholar
  26. 26.
    J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD, pages 1–12. ACM, 2000.Google Scholar
  27. 27.
    D. Hand, N. Adams, and R. Bolton, editors. Pattern Detection and Discovery. Springer-Verlag, 2002.Google Scholar
  28. 28.
    S. Hanhijärvi, G. C. Garriga, and K. Puolamäki. Randomization techniques for graphs. In SDM, pages 780–791. SIAM, 2009.Google Scholar
  29. 29.
    S. Hanhijärvi, M. Ojala, N. Vuokko, K. Puolamäki, N. Tatti, and H. Mannila. Tell me something I don’t know: randomization strategies for iterative data mining. In KDD, pages 379–388. ACM, 2009.Google Scholar
  30. 30.
    H. Heikinheimo, J. K. Seppänen, E. Hinkkanen, H. Mannila, and T. Mielikäinen. Finding low-entropy sets and trees from binary data. In KDD, pages 350–359, 2007.Google Scholar
  31. 31.
    H. Heikinheimo, J. Vreeken, A. Siebes, and H. Mannila. Low-entropy set selection. Lowentropy set selection. In SDM, pages 569–580, 2009.Google Scholar
  32. 32.
    A. Henelius, J. Korpela, and K. Puolamäki. Explaining interval sequences by randomization. In ECML PKDD, pages 337–352. Springer, 2013.Google Scholar
  33. 33.
    IBM. IBM Intelligent Miner User’s Guide, Version 1, Release 1, 1996.Google Scholar
  34. 34.
    S. Jaroszewicz and D. A. Simovici. Interestingness of frequent itemsets using bayesian networks as background knowledge. In KDD, pages 178–186. ACM, 2004.Google Scholar
  35. 35.
    E. Jaynes. On the rationale of maximum-entropy methods. Proc. IEEE, 70(9):939–952, 1982.CrossRefGoogle Scholar
  36. 36.
    R. M. Karp. Reducibility among combinatorial problems. In Proc. Compl. Comp. Comput., pages 85–103, New York, USA, 1972.Google Scholar
  37. 37.
    K.-N. Kontonasios and T. De Bie. An information-theoretic approach to finding noisy tiles in binary databases. In SDM, pages 153–164. SIAM, 2010.Google Scholar
  38. 38.
    K.-N. Kontonasios and T. De Bie. Formalizing complex prior information to quantify subjective interestingness of frequent pattern sets. In IDA, pages 161–171, 2012.Google Scholar
  39. 39.
    J. Lijffijt, P. Papapetrou, and K. Puolamäki. A statistical significance testing approach to mining the most informative set of patterns. Data Min. Knowl. Disc., pages 1–26, 2012.Google Scholar
  40. 40.
    C. Lucchese, S. Orlando, and R. Perego. Mining top-k patterns from binary datasets in presence of noise. In SDM, pages 165–176, 2010.Google Scholar
  41. 41.
    M. Mampaey. Mining non-redundant information-theoretic dependencies between itemsets. In DaWaK, pages 130–141, 2010.Google Scholar
  42. 42.
    M. Mampaey, J. Vreeken, and N. Tatti. Summarizing data succinctly with the most informative itemsets. TKDD, 6:1–44, 2012.CrossRefGoogle Scholar
  43. 43.
    H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed representations. In KDD, pages 189–194, 1996.Google Scholar
  44. 44.
    H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. In KDD, pages 181–192, 1994.Google Scholar
  45. 45.
    H. Mannila, H. Toivonen, and A. I. Verkamo. Levelwise search and borders of theories in knowledge discovery. Data Min. Knowl. Disc., 1(3):241–258, 1997.CrossRefGoogle Scholar
  46. 46.
    R. Meo. Theory of dependence values. ACM Trans. Database Syst., 25(3):380–406, 2000.CrossRefGoogle Scholar
  47. 47.
    P. Miettinen and J. Vreeken. Model order selection for Boolean matrix factorization. In KDD, pages 51–59. ACM, 2011.Google Scholar
  48. 48.
    P. Miettinen and J. Vreeken. mdl4bmf: Minimum description length for Boolean matrix factorization. Technical Report MPI-I-2012-5-001, Max Planck Institute for Informatics, 2012.Google Scholar
  49. 49.
    P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila. The discrete basis problem. IEEE TKDE, 20(10):1348–1362, 2008.Google Scholar
  50. 50.
    F. Moerchen, M. Thies, and A. Ultsch. Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression. Knowl. Inf. Sys., 29(1):55–80, 2011.CrossRefGoogle Scholar
  51. 51.
    M. Ojala. Assessing data mining results on matrices with randomization. In ICDM, pages 959–964, 2010.Google Scholar
  52. 52.
    N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. In ICDT, pages 398–416. ACM, 1999.Google Scholar
  53. 53.
    D. Pavlov, H. Mannila, and P. Smyth. Beyond independence: Probabilistic models for query approximation on binary transaction data. IEEE TKDE, 15(6):1409–1421, 2003.Google Scholar
  54. 54.
    J. Pei, A. K. Tung, and J. Han. Fault-tolerant frequent pattern mining: Problems and challenges. Data Min. Knowl. Disc., 1:4–2, 2001.Google Scholar
  55. 55.
    R. G. Pensa, C. Robardet, and J.-F. Boulicaut. A bi-clustering framework for categorical data. In PKDD, pages 643–650. Springer, 2005.Google Scholar
  56. 56.
    A. K. Poernomo and V. Gopalkrishnan. Towards efficient mining of proportional fault-tolerant frequent itemsets. In KDD, pages 697–706, New York, NY, USA, 2009. ACM.Google Scholar
  57. 57.
    G. Rasch. Probabilistic Models for Some Intelligence and Attainnment Tests. Danmarks paedagogiske Institut, 1960.Google Scholar
  58. 58.
    J. Rissanen. Modeling by shortest data description. Automatica, 14(1):465–471, 1978.CrossRefMATHGoogle Scholar
  59. 59.
    G. Schwarz. Estimating the dimension of a model. Annals Stat., 6(2):461–464, 1978.CrossRefMATHGoogle Scholar
  60. 60.
    J. K. Seppanen and H. Mannila. Dense itemsets. In KDD, pages 683–688, 2004.Google Scholar
  61. 61.
    A. Siebes and R. Kersten. A structure function for transaction data. In SDM, pages 558–569. SIAM, 2011.Google Scholar
  62. 62.
    A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In SDM, pages 393–404. SIAM, 2006.Google Scholar
  63. 63.
    N. Tatti. Computational complexity of queries based on itemsets. Inf. Process. Lett., 98(5):183–187, 2006.CrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    N. Tatti. Maximum entropy based significance of itemsets. Knowl. Inf. Sys., 17(1):57–77, 2008.CrossRefGoogle Scholar
  65. 65.
    N. Tatti and M. Mampaey. Using background knowledge to rank itemsets. Data Min. Knowl. Disc., 21(2):293–309, 2010.CrossRefMathSciNetGoogle Scholar
  66. 66.
    N. Tatti and F. Moerchen. Finding robust itemsets under subsampling. In ICDM, pages 705–714. IEEE, 2011.Google Scholar
  67. 67.
    N. Tatti and J. Vreeken. Comparing apples and oranges - measuring differences between exploratory data mining results. Data Min. Knowl. Disc., 25(2):173–207, 2012.CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    N. Tatti and J. Vreeken. Discovering descriptive tile trees by fast mining of optimal geometric subtiles. In ECML PKDD. Springer, 2012.Google Scholar
  69. 69.
    C. Tew, C. Giraud-Carrier, K. Tanner, and S. Burton. Behavior-based clustering and analysis of interestingness measures for association rule mining. Data Min. Knowl. Disc., pages 1–42, 2013.Google Scholar
  70. 70.
    J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: Mining itemsets that compress. Data Min. Knowl. Disc., 23(1):169–214, 2011.CrossRefMATHGoogle Scholar
  71. 71.
    C. Wang and S. Parthasarathy. Summarizing itemset patterns using probabilistic models. In KDD, pages 730–735, 2006.Google Scholar
  72. 72.
    G. I. Webb. Self-sufficient itemsets: An approach to screening potentially interesting associations between items. TKDD, 4(1):1–20, 2010.Google Scholar
  73. 73.
    G. I. Webb. Filtered-top-k association discovery. WIREs DMKD, 1(3):183–192, 2011.Google Scholar
  74. 74.
    Y. Xiang, R. Jin, D. Fuhry, and F. F. Dragan. Succinct summarization of transactional databases: an overlapped hyperrectangle scheme. In KDD, pages 758–766, 2008.Google Scholar
  75. 75.
    Y. Xiang, R. Jin, D. Fuhry, and F. Dragan. Summarizing transactional databases with overlapped hyperrectangles. Data Min. Knowl. Disc., 2010.Google Scholar
  76. 76.
    M. J. Zaki. Scalable algorithms for association mining. IEEE TKDE, 12(3):372–390, 2000.MathSciNetGoogle Scholar
  77. 77.
    M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm for closed itemset mining. In SDM, pages 457–473. SIAM, 2002.Google Scholar
  78. 78.
    M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In KDD, Aug 1997.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Max-Planck Institute for Informatics and Saarland UniversitySaarbrückenGermany
  2. 2.HIIT, Department of Information and Computer ScienceAalto UniversityHelsinkiFinland

Personalised recommendations