Advertisement

Supervised Pattern Mining and Applications to Classification

  • Albrecht ZimmermannEmail author
  • Siegfried Nijssen
Chapter

Abstract

In this chapter we describe the use of patterns in the analysis of supervised data. We survey the different settings for finding patterns as well as sets of patterns. The pattern mining settings are categorized according to whether they include class labels as attributes in the data or whether they partition the data based on these labels. The pattern set mining settings are categorized along several dimensions, including whether they perform iterative mining or post-processing, operate globally or locally, and whether they use patterns directly or indirectly for prediction.

Keywords

Rules Classification Subgroup discovery Prediction Pattern sets 

References

  1. 1.
    C. C. Aggarwal. On effective classification of strings with wavelets. In KDD, pages 163–172. ACM, 2002.Google Scholar
  2. 2.
    R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of association rules. In Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI/MIT Press, 1996. ISBN 0-262-56097-6.Google Scholar
  3. 3.
    M.-L. Antonie and O. R. Zaïane. Text document categorization by term association. In ICDM, pages 19–26. IEEE Computer Society, 2002.Google Scholar
  4. 4.
    B. Arunasalam and S. Chawla. CCCS: a top-down associative classifier for imbalanced class distributions. In T. Eliassi-Rad, L. H. Ungar, M. Craven, and D. Gunopulos, editors, KDD, pages 517–522. ACM, 2006.Google Scholar
  5. 5.
    M. Atzmüller and F. Puppe. SD-Map-a fast algorithm for exhaustive subgroup discovery. In [16], pages 6–17. ISBN 3-540-45374-1.Google Scholar
  6. 6.
    S. D. Bay and M. J. Pazzani. Detecting group differences: Mining constrast sets. Data Mining and Knowledge Discovery, 5 (3): 213–246, 2001.CrossRefzbMATHGoogle Scholar
  7. 7.
    B. Bringmann and A. Zimmermann. Tree2-Decision trees for tree structured data. In A. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, editors, 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, pages 46–58. Springer, 2005.Google Scholar
  8. 8.
    B. Bringmann and A. Zimmermann. One in a million: picking the right patterns. Knowledge and Information Systems, 18 (1): 61–81, 2009.CrossRefGoogle Scholar
  9. 9.
    B. Bringmann, S. Nijssen, and A. Zimmermann. Pattern-based classification: A unifying perspective. In A. Knobbe and J. Fürnkranz, editors, From Local Patterns to Global Models: Proceedings of the ECML/PKDD-09 Workshop (LeGo-09), pages 36–50, 2009.Google Scholar
  10. 10.
    L. Cerf, D. Gay, N. Selmaoui-Folcher, B. Crémilleux, and J.-F. Boulicaut. Parameter-free classification in multi-class imbalanced data sets. Data Knowl. Eng., 87: 109–129, 2013.CrossRefGoogle Scholar
  11. 11.
    H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis for effective classification. In Proceedings of the 23rd International Conference on Data Engineering, pages 716–725. IEEE, 2007.Google Scholar
  12. 12.
    H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discriminative pattern mining for effective classification. In Proceedings of the 24th International Conference on Data Engineering, pages 169–178. IEEE, 2008.Google Scholar
  13. 13.
    S. Chiappa, H. Saigo, and K. Tsuda. A Bayesian approach to graphy regression with relevant subgraph selection. In SDM, pages 295–304. SIAM, 2009.Google Scholar
  14. 14.
    G. Dong, X. Zhang, L. Wong, and J. Li. Caep: Classification by aggregating emerging patterns. In S. Arikawa and K. Furukawa, editors, Discovery Science, volume 1721 of Lecture Notes in Computer Science, pages 30–42. Springer, 1999. ISBN 3-540-66713-X.Google Scholar
  15. 15.
    W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S. Yu, and O. Verscheure. Direct mining of discriminative and essential frequent patterns via model-based search tree. In Y. Li, B. Liu, and S. Sarawagi, editors, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 230–238. ACM, 2008. ISBN 978-1-60558-193-4.Google Scholar
  16. 16.
    J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors. Knowledge Discovery in Databases: PKDD 2006,10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18–22, 2006, Proceedings, 2006. Springer. ISBN 3-540-45374-1.Google Scholar
  17. 17.
    F. B. Galiano, J. C. Cubero, D. Sánchez, and J.-M. Serrano. Art: A hybrid classification model. Machine Learning, 54 (1): 67–92, 2004.CrossRefGoogle Scholar
  18. 18.
    D. Gay, N. Selmaoui, and J.-F. Boulicaut. Pattern-based decision tree construction. In ICDIM, pages 291–296. IEEE, 2007.Google Scholar
  19. 19.
    H. Grosskreutz, S. Rüping, and S. Wrobel. Tight optimistic estimates for fast subgroup discovery. In W. Daelemans, B. Goethals, and K. Morik, editors, ECML/PKDD (1), volume 5211 of Lecture Notes in Computer Science, pages 440–456. Springer, 2008. ISBN 978-3-540-87478-2.Google Scholar
  20. 20.
    J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, SIGMOD Conference, pages 1–12. ACM, 2000. ISBN 1-58113-218-2.Google Scholar
  21. 21.
    B. Kavsek and N. Lavrac. Apriori-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence, 20 (7): 543–583, 2006.CrossRefGoogle Scholar
  22. 22.
    S. Kramer and L. De Raedt. Feature construction with version spaces for biochemical applications. In C. E. Brodley and A. P. Danyluk, editors, ICML, pages 258–265. Morgan Kaufmann, 2001. ISBN 1-55860-778-1.Google Scholar
  23. 23.
    N. Lavrač, B. Kavsek, P. A. Flach, and L. Todorovski. Subgroup discovery with CN2-SD. Journal of Machine Learning Research, 5: 153–188, 2004.MathSciNetGoogle Scholar
  24. 24.
    D. Leman, A. Feelders, and A. J. Knobbe. Exceptional model mining. In ECML/PKDD (2), pages 1–16, 2008.Google Scholar
  25. 25.
    W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on multiple class-association rules. In N. Cercone, T. Y. Lin, and X. Wu, editors, Proceedings of the 2001 IEEE International Conference on Data Mining, pages 369–376, San José, California, USA, Nov. 2001. IEEE Computer Society.Google Scholar
  26. 26.
    J. Li, G. Dong, K. Ramamohanarao, and L. Wong. A new instance-based lazy discovery and classification system. Machine Learning, 54 (2): 99–124, 2004.CrossRefzbMATHGoogle Scholar
  27. 27.
    B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, pages 80–86, New York City, New York, USA, Aug. 1998. AAAI Press.Google Scholar
  28. 28.
    D. Meretakis and B. Wüthrich. Extending naïve bayes classifiers using long itemsets. In U. M. Fayyad, S. Chaudhuri, and D. Madigan, editors, KDD, pages 165–174. ACM, 1999. ISBN 1-58113-143-7.Google Scholar
  29. 29.
    S. Morishita and J. Sese. Traversing itemset lattices with statistical metric pruning. In Proceedings of the Nineteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 226–236, Dallas, Texas, USA, May 2000. ACM.Google Scholar
  30. 30.
    S. Nijssen and É. Fromont. Optimal constraint-based decision tree induction from itemset lattices. Data Min. Knowl. Discov., 21 (1): 9–51, 2010.CrossRefMathSciNetGoogle Scholar
  31. 31.
    S. Nijssen and J. N. Kok. Multi-class correlated pattern mining. In F. Bonchi and J.-F. Boulicaut, editors, KDID, volume 3933 of Lecture Notes in Computer Science, pages 165–187. Springer, 2005. ISBN 3-540-33292-8.Google Scholar
  32. 32.
    P. K. Novak, N. Lavrac, and G. I. Webb. Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10: 377–403, 2009.zbMATHGoogle Scholar
  33. 33.
    H. Saigo, N. Krämer, and K. Tsuda. Partial least squares regression for graph mining. In Y. Li, B. Liu, and S. Sarawagi, editors, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 230–238. ACM, 2008., pages 578–586. ISBN 978-1-60558-193-4.Google Scholar
  34. 34.
    H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. gboost:a mathematical programming approach to graph classification and regression. Machine Learning, 75 (1): 69–89, 2009.Google Scholar
  35. 35.
    M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. J. Smola, L. Song, P. S. Yu, X. Yan, and K. M. Borgwardt. Discriminative frequent subgraph mining with optimality guarantees. Statistical Analysis and Data Mining, 3 (5): 302–318, 2010.CrossRefMathSciNetGoogle Scholar
  36. 36.
    M. van Leeuwen, J. Vreeken, and A. Siebes. Compression picks item sets that matter. In [16], pages 585–592. ISBN 3-540-45374–1.Google Scholar
  37. 37.
    A. Veloso, W. M. Jr., and M. J. Zaki. Lazy associative classification. In ICDM, pages 645–654. IEEE Computer Society, 2006.Google Scholar
  38. 38.
    J. Wang and G. Karypis. Harmony: Efficiently mining the best rules for classification. In SDM, 2005.Google Scholar
  39. 39.
    G. I. Webb. Opus: An efficient admissible algorithm for unordered search. J. Artif. Intell. Res. (JAIR), 3: 431–465, 1995.Google Scholar
  40. 40.
    M. J. Zaki. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng., 12 (3): 372–390, 2000.CrossRefMathSciNetGoogle Scholar
  41. 41.
    M. J. Zaki and C. C. Aggarwal. XRules: an effective structural classifier for XML data. In L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos, editors, Proceedings http://www.nakedcapitalism.com/of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 316–325, Washington, DC, USA, Aug. 2003. ACM.
  42. 42.
    A. Zimmermann and B. Bringmann. Ctc-correlating tree patterns for classification. In J. Han, B. W. Wah, V. Raghavan, X. Wu, and R. Rastogi, editors, Proceedings of the Fifth IEEE International Conference on Data Mining, pages 833–836, Houston, Texas, USA, Nov. 2005. IEEE.Google Scholar
  43. 43.
    A. Zimmermann and L. De Raedt. Corclass: Correlated association rule mining for classification. In E. Suzuki and S. Arikawa, editors, Proceedings of the 7th International Conference on Discovery Science, pages 60–72, Padova, Italy, Oct. 2004. Springer.Google Scholar
  44. 44.
    A. Zimmermann and L. De Raedt. Cluster-grouping: from subgroup discovery to clustering. Machine Learning, 77 (1): 125–159, 2009.CrossRefGoogle Scholar
  45. 45.
    A. Zimmermann, B. Bringmann, and U. Rückert. Fast, effective molecular feature mining by local optimization. In J. L. Balcázar, F. Bonchi, A. Gionis, and M. Sebag, editors, ECML/PKDD (3), volume 6323 of Lecture Notes in Computer Science, pages 563–578. Springer, 2010. ISBN 978-3-642-15938-1.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.INSA LyonVilleurbanneFrance
  2. 2.KU LeuvenLeuvenBelgium
  3. 3.Universiteit LeidenLeidenThe Netherlands

Personalised recommendations